摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些模型利用了用户的反馈,如用户返回的频率.(user feedback other than click / no click labels (e.g., how frequentuser returns) ); 三:会给用户推送一些内容类似的新闻,用户看多了会无聊. 为了解决上述问题,我们提出了DQ…
为什么需要值函数近似? 之前我们提到过各种计算值函数的方法,比如对于 MDP 已知的问题可以使用 Bellman 期望方程求得值函数:对于 MDP 未知的情况,可以通过 MC 以及 TD 方法来获得值函数,为什么需要再进行值函数近似呢? 其实到目前为止,我们介绍的值函数计算方法都是通过查表的方式获取的: 表中每一个状态 \(s\) 均对应一个 \(V(s)\) 或者每一个状态-动作 <\(s, a\)> 但是对于大型 MDP 问题,上述方法会遇到瓶颈: 太多的 MDP 状态.动作需要存储 单独…
Dictum:  Life is just a series of trying to make up your mind. -- T. Fuller 不同于近似价值函数并以此计算确定性的策略的基于价值的RL方法,基于策略的RL方法将策略的学习从概率集合\(P(a|s)\)变换成策略函数\(\pi(a|s)\),并通过求解策略目标函数的极大值,得到最优策略\(\pi^*\),主要用的是策略梯度方法(Policy Gradient Methods). 策略梯度方法直接对随机策略\(\pi\)进行参…
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 20…
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning 摘要 近年来,实时策略游戏一直是游戏人工智能的重要领域.本文提出了一个强化学习和课程转换学习方法来控制星际争霸微操作中的多个单位.我们定义了一个有效的状态表示,它可以打破游戏环境中大型状态空间造成的复杂性.…
上一篇博文的内容整理了我们如何去近似价值函数或者是动作价值函数的方法: \[ V_{\theta}(s)\approx V^{\pi}(s) \\ Q_{\theta}(s)\approx Q^{\pi}(s, a) \] 通过机器学习的方法我们一旦近似了价值函数或者是动作价值函数就可以通过一些策略进行控制,比如 \(\epsilon\)-greedy. 那么我们简单回顾下 RL 的学习目标:通过 agent 与环境进行交互,获取累计回报最大化.既然我们最终要学习如何与环境交互的策略,那么我们可…
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action value 最大的action,action 的选择都离不开action value 的计算).即没有action value的估计值就无法进行action选择,也就没有Policy,这类方法被称为 value-ba…
DRL 教材 Chpater 11 --- 策略梯度方法(Policy Gradient Methods) 前面介绍了很多关于 state or state-action pairs 方面的知识,为了将其用于控制,我们学习 state-action pairs 的值,并且将这些值函数直接用于执行策略和选择动作.这种形式的方法称为:action-value methods. 下面要介绍的方法也是计算这些 action (or state) values,但是并非直接用于选择 action, 而是直…
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.youtube.com/watch?v=z95ZYgPgXOY&t=512s…
Towards end-to-end reinforcement learning of dialogue agents for information access KB-InfoBot 与知识库交互的多轮对话模型,放弃符号式的查询语句,转而在知识库上使用soft后验分布来寻找概率最大的信息. 知识库 知识库的数据是常见的(实体关系 head, relation,tail)三元组,本文将其做了一步转化,将三元组数据库转化成表格形式:行为实体(head)的属性(tail),列为关系(relati…