洛谷题面传送门 一道其实算得上常规的题,写这篇题解是为了总结一些数论中轻微(?)优化复杂度的技巧. 首先感性理解可以发现该问题强于区间数颜色问题,无法用常用的 log 数据结构维护,因此考虑分块/莫队.显然这题莫队比较好些对吧?显然我们要对每个质因子计算一遍它在 \([l,r]\) 中的出现次数对吧?涉及质因子就要分解质因数对吧?莫队时候新添一个元素很明显就要枚举它的每个质因子,然后计算新添的贡献对吧?线性预处理乘法逆元以后,复杂度就变成了 \(n\sqrt{a_i}+(n+q)\sqrt{n}…
传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即\(x2^{len}-x2^{len-k}\). 发现前面那东西很好维护,后面怎么办呢? 考虑把出现次数相同的数放在一起维护:维护每个出现次数里面数的和,统计答案的时候暴力统计. 为什么对呢?因为\(1+2+\dots+\sqrt{n}=n\),所以最多只有\(\sqrt n\)种次数,暴力即可.…
一道神题...自己写出来以后被卡常了...荣获洛谷最差解... 思路还是比较好想,对于每个数 \(\sqrt{n}\) 分块,对于 \(\sqrt{n}\) 以内的数,我们可以直接求出来.对于 \(\sqrt{n}\) 以上的数,我们用莫队求. 不过空间 \(O(\frac {n\sqrt{10^9}}{\log n})\) 开不下,非常优秀... 那我们就把前 $100$ 个质数求出来,其他就用莫队好了,转移均摊是 \(O(1)\) 的吧... 常数巨大,本人没卡常.记得要等一个没人的时候提交…
题目链接:洛谷 这个跟上上个Ynoi题目是一样的套路,首先我们知道\(n=\prod p_i^{\alpha_i}\)时\(d(n)=\prod (\alpha_i+1)\). 首先对所有数分解质因数,首先预处理\(\leq \sqrt{\max a_i}\)的所有质数,然后一个一个试除,时间复杂度\(O(\frac{n\sqrt{a_i}}{\log{a_i}})\),在lxl的数据下跑得飞快(大家都知道,卡常是要看数据性质的).或者使用Pollard-rho分解也是可以的. 然后莫队,维护\…
Codeforces 题目传送门 & 洛谷题目传送门 震惊!我竟然独立切掉了这道 *3100 的题! 虽然此题难度的确虚高,感觉真实评分也就 2800~2900 罢.但感觉还是挺有成就感的( 注意到题目中所询问的那坨东西基于每个数在区间中出现的次数,因此此题必不可少的一个步骤就是求出每个数的出现次数 \(cnt_x\),这个可以用带修莫队在 \(n^{5/3}\) 的时间内求出,这里就不再赘述了. 接下来考虑怎样计算答案,这也是本题的难点所在.我们将所有 \([l,r]\) 中出现次数非零的数的…
如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站立的地方外的所有地方盖上,美丽漂亮聪慧的公主就是他的人了.公主这一个方格不能用地毯盖住,毯子的形状有所规定,只能有四种选择(如图): (此处图误见后处的图) 并且每一方格只能用一层地毯,迷宫的大小为 ^k * ^k的方形.当然,也不能让公主无限制的在那儿等,对吧?由于你使…
洛谷题目传送门 一血祭 向dllxl致敬! 算是YNOI中比较清新的吧,毕竟代码只有1.25k. 首先我们对着题意模拟,寻找一些思路. 每次选了一个最大的数后,它和它周围两个数都要减一.这样无论如何,我们都选不到旁边那两个数,只有第一次选的那个数会对答案产生它的大小的贡献. 于是就可以写出一个\(O(nm\log n)\)的暴力用来对拍了 #include<bits/stdc++.h> #define LL long long #define R register int #define G…
原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即该区间内含有这个数的子序列个数.用补集转化为不含这个数的子序列个数. 那么,假设这个数在[l,r]内出现了kk次,则一共有2^(r-l+1)-2^(r-l+1-k)个子序列包含这个数. 本题可以离线,因此选择使用莫队,过程中维护cnt[k]表示区间内恰好出现k次的数字个数,维护sum[j]表示区间内…
众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题(我也只会莫队) 我博客里对莫队的简单介绍 一个数N可以分解成\(p_1^{c_1}p_2^{c_2}-p_m^{c_m}\) 它的约数个数就是\((c_1+1)(c_2+1)-(c_m+1)\) 我们考虑先把每一个数分解质因数 用试除法会使你tle到没救,所以我们要用pollard's Rho来解决问题 (用质因数分解是因为\(10^9<2*3*5*7*11*13*17*19*23*29\…
传送门 lxl大毒瘤 首先一个数的因子个数就是这个数的每个质因子的次数+1的积,然后考虑把每个数分解质因子,用莫队维护,然后我交上去就0分了 如果是上面那样的话,我们每一次移动指针的时间复杂度是O(这个数的质因子个数),再加上我人傻常数大,T很正常-- 于是按照memset0的说法,可以预处理质因子的前缀和,简单来说就是对于小于\(\sqrt{mx}\)的所有质因子维护前缀和,直接统计,大于的暴力在莫队的时候更新.因为每个数大于\(\sqrt{mx}\)的质因子个数为\(O(1)\),所以暴力更…