UOJ#348. 【WC2018】州区划分】的更多相关文章

[UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 \(n\) 座城市划分成若干个州,每个州由至少一个城市组成,每个城市在恰好一个州内. 假设小 \(S\) 将这些城市划分成了 \(k\) 个州,设 \(V_i\) 是第 \(i\) 个州包含的所有城市组成的集合. 定义一条道路是一个州的内部道路,当且仅当这条道路的两个端点城市都在这个州内. 如果一…
题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的权值为这一部分中所有点的权值和比上前i部分所有点的权值和的p次方,一种划分方案的权值为每部分的权值之积.要求求出所有划分方案的权值之和. 我们设f[S]为选中点的状态集合为S时的答案(其中S为二进制状态),设T为S集合最后一次划分出的集合且要保证集合T合法,那么可以得到转移方程(其中sum代表集合中…
[WC2018]州区划分 注意审题: 1.有序选择 2.若干个州 3.贡献是州满意度的乘积 枚举最后一个州是哪一个,合法时候贡献sum[s]^p,否则贡献0 存在欧拉回路:每个点都是偶度数,且图连通(dfs验证) 然后愉快子集卷积即可. PS:FMT辣鸡, FWT可以节省一倍的常数!这样才能通过此题 #include<bits/stdc++.h> #define reg register int #define il inline #define fi first #define se sec…
[WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考虑朴素状压dp很容易得到 $ f_{ S } = \sum\limits_{ T \subseteq S } f_{ S - T } \times ( \frac{ val_{ T } }{ val_{ S } } )^{p} $ . 直接dp时间复杂度 $ 3^{ N } $ 当场去世. 但由于是…
LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的值. 枚举子集转移 可以发现利用FST进行优化. FST怎么做?详见另一篇文章史上最详细FST解释 code //#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<ctime>…
传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷积 定义:对于两个集合幂级数\(F,G\),它们的子集卷积\(H\)定义为\[H_S=\sum_{T\subseteq S}F_TG_{S-T}\] 简单来说就是两个下标要满足的条件为\(L\cap R=\varnothing\)且\(L\cup R=S\) \(L\cup R=S\)就是个异或卷积…
题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉回路每个点的度都得是偶数而且图联通,这个条件扫描一遍在上一个并查集就可以判掉了. 然后开始统计答案. n很小,可以考虑状压dp,我们设dp[s]为已经划分好的州区点集和为s它的所有方案的答案的和. 转移可以考虑枚举子集. dp[s]=∑dp[s']*(sum[s^s']/sum[s])p 然后我们发…
合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方案的满意度之和,枚举子集转移,则有f[S]=Σg[S']*f[S^S']*(sum[S']/sum[S])p (S'⊆S),其中g[S]为S集合是否合法,sum[S]为S集合人口数之和.复杂度O(3n).这个式子非常显然,就这么送了50分.p这么小显得非常奇怪但也没有任何卵用. 考虑优化.转移方程写…
题目分析: 这题是WC的题??? 令 $g[S] = (\sum_{x \in S}w_x)^p$ $h[S] = g[S]$如果$S$不是欧拉回路 $d[S] = \frac{f[S]}{g[All-S]^p}$ $f[S] = \sum_{T \subset S}d[S-T]*h[T]$ 总数等于$f[All]$ 代码: #include<bits/stdc++.h> using namespace std; ; ; <<)+],g[(<<)+],d[maxn][(…
很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合大小,再FMT处理集合并卷积. 然而我的FMT常数过大,而并卷积又可以用FWT实现,于是就写FWT了.(实际上就三行的区别) #include<cstdio> #include<algorithm> #include<cstring> #define rep(i,l,r)…