首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
P1450 [HAOI2008]硬币购物(完全背包+容斥)
】的更多相关文章
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i\)个,且每种物品的体积为\(c_i\),问有多少种方法装满容量为\(s\)的背包?可以很容易想到跑多重背包即可,但是发现复杂度为\(O(4V\cdot n)\).不可行. 题目要求的东西也等价于求以下等式有多少组满足条件的解: \[ c_1\cdot x_1+c_2\cdot x_2+c_3\cd…
BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s3+s4)+(s12+s13+s14+s23+s24+s34)-(s123+s124+s134+s234)+s1234 其中s...为某硬币超过限制的方案数 求s的方法: 如s1:硬币1超过限制,就是硬币1至少选了num1+1个,其他随便,所以s1=dp[V-c1*(num1+1)] 同理s12 = dp…
BZOJ-1042:硬币购物(背包+容斥)
题意:硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 思路:这么老的题,居然今天才做到...背包的复杂度是比较高的. 加上tot次询问会爆炸.能不能预处理,然后容斥得到答案呢? 先求一个完全背包,求出方案数,dp[]. 然后对于具体的询问,减去不合法的情况 . 对于c[i],它发贡献是dp[S-c[i]*(d[i]+1)]; 那么会重复减,所以又…
[BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +…
bzoj1042: [HAOI2008]硬币购物(DP+容斥)
1600+人过的题排#32还不错嘿嘿 浴谷夏令营讲过的题,居然1A了 预处理出f[i]表示购买价值为i的东西的方案数 然后每次询问进行一次容斥,答案为总方案数-第一种硬币超限方案-第二种超限方案-第三种超限方案-第四种超限方案+第一种和第二种硬币超限方案+... 第i种硬币超限方案就是f[s-c[i]*(d[i]+1)],其他的类推一下就行了 #include<iostream> #include<cstring> #include<cstdlib> #include&…
P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$东西的方案数 蓝后对每次询问价值$t$,减去不合法的方案 $c_1$超额方案$f[t-c_1*(d_1+1)]$,表示取了$d_1+1$个$c_1$,剩下随便取的方案数(这就是差分数组) 如法炮制,减去$c_2,c_3,c_4$的超额方案数 但是我们发现,我们多减了$(c_1,c_2),(c_1,c…
[Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做…
洛谷—— P1450 [HAOI2008]硬币购物
P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请问每次有多少种付款方法. 直接考虑有多少种方案数可行有点儿难,这时候就应该考虑容斥原理,即有多少人不可行,计算出总的方案数,容斥一下即可. 使用完全背包,计算总的方案数. 然后枚举每一种可能的情况,用总的方案数-第一枚硬币超过的方案数-第二枚...+第一枚和第二枚同时超过的方案数...以此类推 #i…
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面值分别为 \(c_1,c_2,c_3,c_4\). 某人去商店买东西,去了 \(n\) 次,对于每次购买,他带了 \(d_i\) 枚 \(i\) 种硬币,想购买 \(s\) 的价值的东西.请问每次有多少种付款方法. 分析: 设有且仅有一种硬币,价值为 \(c\) ,有 \(d\) 枚.现在想买价值为…
洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 加上不符第一枚和第二枚的方案,第一枚和第三枚的方案以此类推,不明 白原理可以去看一下容斥原理 较长代码(懒得优化) #include<iostream> #include<cstdio> #include<cstring> #include<string> #…