Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros 全文链接:https://arxiv.org/abs/1611.07004 GANs是一种生成模型,它学习从随机噪声向量z到输出图像y的映射.条件GAN学习从观测图像x和随机噪声向量z到y的映射.生成器G经过训练后产…
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (使用循环一致的对抗网络的非配对图像-图像转化) 原文地址:https://arxiv.org/abs/1703.10593 作者:Jun-Yan Zhu,Taesung Park,Phillip Isola,Alexei A. Efros 作者机构:伯克利人工智能研究(BAIR)实验室 作者博客:Jun-Yan Zhu,http://p…
Introduction 1. develop a common framework for all problems that are the task of predicting pixels from pixels. 2. CNNs learn to minimize a loss function -an objective that scores the quality of results-- and although the learning process is automati…
出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不同种类的语言翻译类比,提出了Image translation的概念,并希望在给定足够的训练数据以后,训练后的网络能像完成自动语言翻译的任务一样自动地完成图片的转换任务. (这图对俺启发挺大啊,嘻嘻) GAN损失函数: L1损失函数:用于约束最终生成图片和原图的偏差不至太大 总损失函数: 生成器G采…
Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color, image to semantic labels, edge-map to photograph.),并申明了本作的动机,不使用 image pairs来训练图片的风格转换:We present an approach for learning to translate an image fro…
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf (arxiv.org) (个人理解,欢迎指正错误)   Introduction 隐私:整个人脸 可用性:是看起来自然的人 文章去除真实人脸的同时生成了高质量的假人脸,可用于支持跟踪.检测等计算机视觉任务.与先前工作相比,本文的创新处在于可以在一定程度上控制人脸匿名效果,依据给定的身份参照指导假人脸…
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利用 GANs 进行高质量图像生成,分为两个阶段进行,coarse to fine 的过程.据说可以生成 256*256 的高清图像. 基于文本生成对应图像的工作已经有了,比如说 Attribute2Image,以及 最开始的基于文本生成图像的文章等等. Stacked Generated Adver…
作者:朱俊彦,朱俊彦博士是计算机图形学领域现代机器学习应用的开拓者.他的论文可以说是第一篇用深度神经网络系统地解决自然图像合成问题的论文.因此,他的研究对这个领域产生了重大影响.他的一些科研成果,尤其是 CycleGAN,不仅为计算机图形学等领域的研究人员所用,也成为视觉艺术家广泛使用的工具.计算机图形顶级会议 ACM SIGGRAPH 2018 即将于 8 月 12-16 日在加拿大温哥华举行.在大会开始前,部分奖项结果已经揭晓.朱俊彦获得了大会的最佳博士论文奖.GAN之父Ian Goodfe…
文章地址:http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf 代码地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix 原理: CycleGAN这篇文章的亮点是提出了无需使用成对样本来训练模型的新思路.像pix2pix这类方法则需要成对的数据来训练. 由于在实…
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neurips.github.io/ 配有MelGAN解码器的音乐翻译网络:https://www.descript.com/overdub 摘要 以前的工作(Donahue等人,2018a:Engel等人,2019a)已经发现用GAN生成相干的原始音频波形是一个挑战.在本文中,我们证明了通过引入一系列结…