matlab可以用 -Conjugate gradient -BFGS -L-BFGS 等优化后的梯度方法来求解优化问题.当feature过多时,最小二乘计算复杂度过高(O(n**3)),此时 这一些列优化版梯度下降算法就成为了解优化问题的更优选择. 它们的优点为: 不需要像对原始梯度下降那样手动选择学习速率α 一般比梯度下降收敛速度要快 相应的缺点为:比梯度下降要复杂得多 好在,我们可以直接用matlab内置函数进行计算. 例子如下: 我们需要输入cost function J 及其偏导数:…
▶ 书上第二章,用一系列步骤优化梯度下降法解线性方程组.才发现 PGI community 编译器不支持 Windows 下的 C++ 编译(有 pgCC 命令但是不支持 .cpp 文件,要专业版才支持),以后 OpenACC - C++ 全盘转向 Ubuntu 中. ● 代码 // matrix.h #pragma once #include <cstdlib> struct matrix { unsigned int num_rows; unsigned int nnz; unsigned…
梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底.为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示: 懒得画图了直接用这个展示一下.在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值.每次迭代的过程…
目录 目录题目作答1. 建立函数文件ceshi.m2. 这是调用的命令,也可以写在.m文件里3. 输出结果题外话 题目 作答 本文使用MATLAB作答 1. 建立函数文件ceshi.m function [x1,y1,f_now,z] = ceshi(z1,z2) %%%%%%%%%%%%%% 梯度下降法求函数局部极大值@冀瑞静 %%%%%%%%%%%%%%%%%% % 函数:f(x,y)= % 目的:求局部极大值和对应的极大值点坐标 % 方法:梯度下降法 % 理论: % 方向导数:偏导数反应的…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Wi…
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width…
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度上升法. 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导:概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码). 1 最优化问题 最优化问题是求解函数极值的问题,…
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向:      如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法.梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解.一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的.梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下…
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向,对应J增大的方向.对于蓝点,斜率为负,西塔减少时J增加,西塔增加时J减少,我们想让J减小,对应导数的负方向,因此前面需要加上负号. (伊塔对应步长)-------(1) 用当前点的西塔加上(1)式,得到新的西塔.因为导数是负值,前面又有负号,所以整个是正值,加上一个正值对应西塔在增大. 多维函数中,…