dead relu and Tensorboard】的更多相关文章

https://medium.com/analytics-vidhya/is-relu-dead-27943b50102 1.使用relu作为激活函数时,因其在输入小于0时,输出为0,所以可能会造成dead relu,使得输出和梯度都为0: 2.上述文章中使用了多种方式尝试去改善,包括更多层,更多数据,改变初始化方式,使用leak relu(why)等都没有效果,最后使用了SELU解决了这个问题. 3.这篇文章主要是通过Tensorboard来观察dead relu这种现象,以前只会使用它来观察…
为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了. 正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数).最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balab…
[转载] ReLU和BN层简析 来源:https://blog.csdn.net/huang_nansen/article/details/86619108 卷积神经网络中,若不采用非线性激活,会导致神经网络只能拟合线性可分的数据,因此通常会在卷积操作后,添加非线性激活单元,其中包括logistic-sigmoid.tanh-sigmoid.ReLU等. sigmoid激活函数应用于深度神经网络中,存在一定的局限性,当数据落在左右饱和区间时,会导致导数接近0,在卷积神经网络反向传播中,每层都需要…
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection 转载请注明作者:梦里茶 YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题 网络结构 输入图片:resize到448x448 整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的) 将图片划分为SxS个格子,S=7 输出一个SxS大小的…
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构,各类优化方法 1.卷积神经网络工作原理的直观解释 https://www.zhihu.com/question/39022858 简单来说,在一定意义上,训练CNN就是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活能力,以达到CNN网络的分类/检测等目的. 2.卷积神经网络的复杂度分析 ht…
Lecture 6  Training Neural Networks 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 本节课内容主要包括三部分:训练前准备.训练和评分.具体包括激活函数的选择,预处理,权重初始化,正则化,梯度检查,监控学习进程,参数更新,超参数优化和最终的模型评估. 一.激活函数 激活函数就是f,在以往线性评分的基础上加上激活函数,引入了非线性项,整体作为评分. 1.     Sigmoid:…
本文为内容整理,原文请看url链接,感谢几位博主知识来源 一.什么是激励函数 激励函数一般用于神经网络的层与层之间,上一层的输出通过激励函数的转换之后输入到下一层中.神经网络模型是非线性的,如果没有使用激励函数,那么每一层实际上都相当于矩阵相乘.经过非线性的激励函数作用,使得神经网络有了更多的表现力. 这是一个单层的感知机, 也是我们最常用的神经网络组成单元啦. 用它可以划出一条线, 把平面分割开 那么很容易地我们就会想用多个感知机来进行组合, 获得更强的分类能力, 这是没问题的啦~~ 如图所示…
CNN网络的迁移学习(transfer learning) 1.在ImageNet上进行网络的预训练 2.将最上方的层,即分类器移除,然后将整个神经网络看成是固定特征提取器来训练,将这个特征提取器置于你的数据集上方,然后替换原先作为分类器的层,根据数据集的大小来确定如何对卷积网络的最后一层进行训练,或者你可以对整个网络的一部分反向传播进行微调. 3.如果你有更大的数据集,你可以在整个网络进行更深的反向传播 拥有大量的预训练好的模型,所以没有大量的数据也不会有太多影响,你只需要找一个经过预训练的卷…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
转自:https://blog.csdn.net/edogawachia/article/details/80043673 1.sigmoid 特点:可以解释,比如将0-1之间的取值解释成一个神经元的激活率(firing rate) 缺陷: 有饱和区域,是软饱和,在大的正数和负数作为输入的时候,梯度就会变成零,使得神经元基本不能更新. 只有正数输出(不是zero-centered,均值为0?),这就导致所谓的zigzag现象: 也就是说,w始终是朝着一直为正或者一直为负去变化的. 也就是说,更新…