【Spark调优】Broadcast广播变量】的更多相关文章

[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广播(Broadcast)功能来提升性能. [原理说明] 在算子函数中使用到外部变量或两表join时,默认情况下,Spark会将该变量或小维表复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本.如果变量本身比较大的话(比如100M,甚至1G),那么大量的变量副本在网络中传输的性能…
Spark性能调优:广播大变量broadcast 原文链接:https://blog.csdn.net/leen0304/article/details/78720838 概要 有时在开发过程中,会遇到需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时就应该使用Spark的广播(Broadcast)功能来提升性能. 在算子函数中使用到外部变量时,默认情况下,Spark会将该变量复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本.如果变量本…
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要. spark提交作业,yarn-cluster模式示例: ./bin/spark-submit\ --class com.ww.rdd.wordcount \ --master yarn \ --deploy-mode cluster \  --executor-memory 4G \ --num…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里).2.远程通信,即在网络上传送对象的字节序列. 这篇文章写的不错https://blog.csdn.net/wangloveall/article/details/7992448 [Spark序列化与反序列化场景] 在Spark中,主要有三个地方涉及序列化与反序列化…
由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运行计算,任何集群中的资源限制都可能成为Spark程序的瓶颈,比如:CPU.网络.带宽.内存.通常情况下,如果内存能容纳所处理数据,主要的瓶颈则仅是网络带宽.但有些时候您也需要做一些调优,比如利用RDD序列化存储来降低内存消耗.本手册将会涵盖以下两个大点:数据序列化(对优化网络传输和降低内存开销有显著…
Spark 调优 返回原文英文原文:Tuning Spark Because of the in-memory nature of most Spark computations, Spark programs can be bottlenecked by any resource in the cluster: CPU, network bandwidth, or memory. Most often, if the data fits in memory, the bottleneck is…
Spark相关问题 Spark比MR快的原因? 1) Spark的计算结果可以放入内存,支持基于内存的迭代,MR不支持. 2) Spark有DAG有向无环图,可以实现pipeline的计算模式. 3) 资源调度模式:Spark粗粒度资源调度,MR是细粒度资源调度. 资源复用:Spark中的task可以复用同一批Executor的资源. MR里面每一个map task对应一个jvm,不能复用资源. Spark中主要进程的作用? Driver进程:负责任务的分发和结果的回收. Executor进程:…
Spark调优 | Spark Streaming 调优 1.数据序列化 2.广播大变量 3.数据处理和接收时的并行度 4.设置合理的批处理间隔 5.内存优化 5.1 内存管理 5.2优化策略 5.3垃圾回收(GC)优化 5.5Spark Streaming 内存优化 6.实例项目调优 6.1合理的批处理时间(batchDuration) 6.2合理的 Kafka 拉取量(maxRatePerPartition 参数设置) 6.3缓存反复使用的 Dstream(RDD) 6.4其他一些优化策略…