KNN算法基本实例】的更多相关文章

一.概述 [定义]如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 二.距离计算公式 两个样本的距离可以通过如下公式计算,又叫[欧式距离] 设有特征,a(a1,a2,a3),b(b1,b2,b3),那么: \[\sqrt{(a1-b1)^{2}+(a2-b2)^{2}+(a3-b3)^{2}}\] 三.sklearn k-近邻算法API sklearn.neighbors.KNeighborsClassifier(n_neighb…
KNN算法是机器学习领域中一个最基本的经典算法.它属于无监督学习领域的算法并且在模式识别,数据挖掘和特征提取领域有着广泛的应用. 给定一些预处理数据,通过一个属性把这些分类坐标分成不同的组.这就是KNN的思路. 下面,举个例子来说明一下.图中的数据点包含两个特征: 现在,给出数据点的另外一个节点,通过分析训练节点来把这些节点分类.没有分来的及诶但我们标记为白色,如下所示: 直观来讲,如果我们把那些节点花道一个图片上,我们可能就能确定一些特征,或组.现在,给一个没有分类的点,我们可以通过观察它距离…
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法是用来做归类的,也就是说,一个样本空间里的样本已经分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类. 一个比较经典的KNN图如下: 从上图中我们可以看到,图中的有两个类型…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
KNN算法基本的思路是比较好理解的,今天根据它的特点写了一个实例,我会把所有的数据和代码都写在下面供大家参考,不足之处,请指正.谢谢! update:工程代码全部在本页面中,测试数据已丢失,建议去UCI Dataset中找一个自行测试一下. 几点说明: 1.KNN中的K=5; 2.在计算权重时,采用的是减去函数{1,0.8,0.6,0.4,0.2},当然你也可以采用反函数或高斯函数; 3.5%作为测试集(decision.txt),95%作为训练集(training.txt): 4.在计算cos…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程:只需要加载训练数据: 测试过程:通过之前加载的训练数据,计算测试数据集中各个样本的标签,从而完成测试数据集的标注: 2.代码 具体代码如下: #!/usr/bin/env/ python # -*- coding: utf-8 -*- import csv import random from m…
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数 tile() 如tile(A,n)就是将A重复n次 a = np.array([0, 1, 2]) np.tile(a, 2) array([0,…
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 KNN算法简介 KNN(k-nearest neighbor的缩写)又叫最近邻算法.是1968年由Cover和Hart提出的一种用于分类和回归的无母数统计方法.什么叫无母统计方法呢,这里作个补充:无母统计方法又称非参数统计学,是统计学的一个分支,适用于母群体情况未明,小样本,母群体分布不为常态也不易转…
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…