洛谷P4705 玩游戏 [生成函数,NTT]】的更多相关文章

传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{align*} ans_t&=\sum_{i=1}^n \sum_{j=1}^m (a_i+b_j)^t\\ &=\sum_{i=1}^n \sum_{j=1}^m \sum_{k=0}^t {t\choose k} a_i^k b_j^{t-k}\\ &=t!\sum_{k=0}^t (\s…
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\frac{(a_i+a_j)^k}{nm} x^k \] 求出\(f\)点前\(t\)项 \[ \begin{aligned} nmf(x)&=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\sum_{l=0}^k\binom{k}{l}a_i^lb_j^{k-l}x…
题面 传送门 题解 妈呀这辣鸡题目调了我整整三天--最后发现竟然是因为分治\(NTT\)之后的多项式长度不是\(2\)的幂导致把多项式的值存下来的时候发生了一些玄学错误--玄学到了我\(WA\)的点全都是\(WA\)在\(2\)的幂次行里-- 看到这种题目二话不说先推倒 \[ \begin{aligned} [x^k]Ans &={1\over nm}\sum_{i=1}^n\sum_{j=1}^m\left(a_i+b_j\right)^k\\ &={1\over nm}\sum_{i=…
题目大意:对于每个$k\in[1,t]$,求:$$\dfrac{\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k}{nm}$$$n,m,t\leqslant10^5$ 题解:发现这个$nm$是一个定值,可以先不考虑,先对每一个$k$来求$$\begin{align*}&\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k\\=&\sum\limits_{i=1}^n\sum\limits_{j=…
题目分析 题目要求的是: \[ \sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x(x\in [1,T]) \] 利用二项式定理化式子, \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x\\ =&\sum_{i=1}^n\sum_{j=1}^m\sum_{k=0}^x\binom{x}{k}a_i^kb_j^{x-k}\\ =&x!\sum_{i=1}^n\sum_{j=1}^m\sum_{k=0}^…
[洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了. 现在考虑怎么算上面那个东西. 对于单个的计算,我们可以用二项式定理直接展开 得到 \[\begin{aligned}\sum(a+b)^k&=\sum\sum_{i=0}^kC_k^ia^ib^{k-i}\\&=\sum_{i=0}^kC_k^i(\sum a^i)(\sum b^{k-i…
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有n个数,表…
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,--,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置. 因为是个圈,转到\(n\)就变成\(1\),所以可以进行取模运算(即模\(n\)),\((x+10^k*m)\% n\)就是\(x\)移动\(10^k\)次之后所在的位置,但是求\…
题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 ​ 的序列 ​,Bob 获得一个长度为 ​ 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设为 ​,定义这次游戏的 ​次价值为​. 由于他们发现这个游戏实在是太无聊了,所以想让你帮忙计算对于 ​一次游戏​ 次价值的期望是多少. 由于答案可能很大,只需要求出模 ​下的结果即可. 输入输出格式 输入格式: 第一行两个整数 ​,分别表示 Alice 和 Bob 序列的长度. 接下来一行 ​ 个数…
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起归纳一下. [P1080国王游戏] 题目描述 恰逢 HH国国庆,国王邀请nn 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 nn 位大臣排成一排,国王站在队伍的最前面.排好队后,所有的大臣都会获得国王奖赏的若干金币,每位大臣…