1.异常信息: C:\Python36\python36.exe "E:/python_project/ImoocDataAnalysisMiningModeling/第6章 挖掘建模/6-4~6-5 分类-朴素贝叶斯~分类-决策树.py" C:\Python36\lib\site-packages\sklearn\utils\validation.py:: DataConversionWarning: Data with input dtype int64 was converted…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
  主要可以参考下面几个链接: 1.sklearn文本特征提取 2.使用scikit-learn tfidf计算词语权重 3.sklearn官方中文文档 4.sklearn.feature_extraction.text.CountVectorizer 补充一下:CounterVectorizer()类的函数transfome()的用法 它主要是把新的文本转化为特征矩阵,只不过,这些特征是已经确定过的.而这个特征序列是前面的fit_transfome()输入的语料库确定的特征.见例子: >>&…
机器学习入门 (注:无基础可快速入门,想提高准确率还得多下功夫,文中各名词不做过多解释) Python语言.pandas包.sklearn包   建议在Jupyter环境操作 操作步骤 1.pandas包加载给机器学习训练的表格 依照机器学习领域的习惯,我们把特征叫做X,目标叫做y,通常一列数据最后一列作为目标列 2.映射数据列为整型(Python做决策树需要整型或者实数) 3.拆分训练集.测试集 4.sklearn创建训练模型.测试模型准确率等 5.预测结果导出 算法 1.PCA算法2.LDA…
Sklearn上关于决策树算法使用的介绍:http://scikit-learn.org/stable/modules/tree.html 1.关于决策树:决策树是一个非参数的监督式学习方法,主要用于分类和回归.算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型.如下如所示,决策树通过一系列if-then-else 决策规则 近似估计一个正弦曲线. 决策树优势: 简单易懂,原理清晰,决策树可以实现可视化 数据准备简单.其他的方法需要实现数据归一化,创建虚拟变量,删除空白变量…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-detail/203 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 引言 我们在上一篇SKLearn入门与简单应用案例里给大家讲到了SKLearn工具的基本板块与使用方法,在本篇内容中,我们展开讲解SKLearn的进阶与核心内容.SKLearn中有六大任务模块,如下…
SK-Learn API 全家福 最近SK-Learn用的比较多, 以后也会经常用,将Sk-Learn 所有内容整理了一下,整理思路,并可以备查. (高清图片可以用鼠标右键在单独窗口打开,或者保存到本地) 基础公用 base sklearn.cluster sklearn.datasets Loaders Samples generator sklearn.exceptions sklearn.pipeline sklearn.utils 方法工艺 sklearn.cluster classes…
决策树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布.树的最顶层是根结点.  决策树的构建 想要构建一个决策树,那么咱们首先就需要有一定的已知信息来作为决策树的构建依据. 我们采用下图的数据来进行构建 决策树 一个完整的数据应该包括数据特征和对应的决策信息 下表中的数据,代表对购买电脑的客户信息的记录,分为age/imcome/student...等信息 在该数据源中,age 到 credit_rating 这4列称…
__author__ = '糖衣豆豆' #决策树 import pandas as pda fname="~/coding/python/data/lesson.csv" dataf=pda.read_csv(fname,encoding="gbk") x=dataf.iloc[:,1:5].as_matrix() y=dataf.iloc[:,5].as_matrix() for i in range(0,len(x)): for j in range(0,len…
记得当年在程序员杂志上看出这次访谈,10多年过去了, 这件事儿最近被重提了, 原因是 Kotlin. 1.对Checked Exceptions特性持保留态度 (译者注:在写一段程序时,如果没有用try-catch捕捉异常或者显式的抛出异常,而希望程序自动抛出,一些语言的编译器不会允许编译通过,如Java就是这样.这就是Checked Exceptions最基本的意思.该特性的目的是保证程序的安全性和健壮性.Zee&Snakey(MVP)对此有一段很形象的话,可以参见: http://www.b…