首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
第三章 广义线性模型(GLM)
】的更多相关文章
第三章 广义线性模型(GLM)
广义线性模型 前面我们举了回归和分类得到例子.在回归的例子中,$y \mid x;\theta \sim N(u,\sigma ^{2})$,在分类例子中,$y\mid x;\theta \sim Bbernoulli(\phi)$ 广义线性模型是基于指数函数族的,指数函数族原型为: $p(y;\eta) = b(y)exp(\eta^{T}T(y)-a(\eta))$ $\eta$为自然参数,$T(y)$为充分统计量,一般情况下$T(y)=y$.选择固定的T,a,b定义一个分布,参数为$\…
从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x)$ 等价,即 并给出了二分类(标签 $yin(0,1)$)情况下的判别方式: 但今天再回过头看的时候,突然就不理解了,一个函数值是怎么和一个概率联系起来了呢?有些人解释说因为 $h_{theta}(x)$ 范围在0~1之间啊,可是数值在此之间还是没说明白和概率究竟有什么关系.所以,前几天看了一些资…
广义线性模型 GLM
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 Logistic Regression 假设 $y|x ; \theta$ 服从 Bernoulli 分布. 这里来看线性回归,给定数据集 $\left \{ (x_i,y_i) \right \}_{i=1}^N$ ,$x_i$ 与 $y_i$ 的关系可以写成 $y_i = \theta^Tx_…
广义线性模型(GLM, Generalized Linear Model)
引言:通过高斯模型得到最小二乘法(线性回归),即: 通过伯努利模型得到逻辑回归,即: 这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. 广义线性模型 广义线性模型:广义线性模型是基于指数分布族(Exponential Family),而指数分布…
广义线性模型(GLM)
一.广义线性模型概念 在讨论广义线性模型之前,先回顾一下基本线性模型,也就是线性回归. 在线性回归模型中的假设中,有两点需要提出: (1)假设因变量服从高斯分布:$Y={{\theta }^{T}}x+\xi $,其中误差项$\xi \sim N(0,{{\sigma }^{2}})$,那么因变量$Y\sim N({{\theta }^{T}}x,{{\sigma }^{2}})$. (2)模型预测的输出为$E[Y]$,根据$Y={{\theta }^{T}}x+\xi $,$E[Y]=E[{{…
Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导…
机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
CS299笔记:广义线性模型
指数分布族 我们称一类分布属于指数分布族(exponential family distribution),如果它的分布函数可以写成以下的形式: \[ \begin{equation} p(y;\eta) = b(y) \exp(\eta^{T}T(y) - a(\eta)) \tag{*} \end{equation} \] 其中,\(\eta\)被称为自然参数(natural parameter),\(T(y)\)被称为充分统计量(sufficient statistic),\(a(\eta…
R语言实战(八)广义线性模型
本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) glm()函数的参数 分布族 默认的连接函数 binomial (link = “logit”) gaussian (link = “identity”) gamma (link = “inverse”) inverse.gaussian (link = “1/mu^2”) poisson (link =…
斯坦福CS229机器学习课程笔记 part3:广义线性模型 Greneralized Linear Models (GLMs)
指数分布族 The exponential family 因为广义线性模型是围绕指数分布族的.大多数常用分布都属于指数分布族,服从指数分布族的条件是概率分布可以写成如下形式:η 被称作自然参数(natural parameter),或正则参数canonical parameter),它是指数分布族唯一的参数T(y) 被称作充分统计量(sufficient statistic),很多情况下T(y)=y loga(η) 是log partition functione-a(η)是一个规范化常数,使得…