梅尔倒谱系数(MFCC) 梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC).依据人的听觉实验结果来分析语音的频谱, MFCC分析依据的听觉机理有两个 第一Mel scale:人耳感知的声音频率和声音的实际频率并不是线性的,有下面公式 $$f_{mel}=2595*\log _{10}(1+\frac{f}{700})$$ $$f = 700 (10^{f_{mel}/2595} - 1)$$ 式中$f_{mel}$是以梅尔(Mel)为…
最近学习音乐自动标注的过程中,看到了有关使用MFCC提取音频特征的内容,特地在网上找到资料,学习了一下相关内容.此笔记大部分内容摘自博文 http://blog.csdn.net/zouxy09/article/details/9156785 有小部分标注和批改时我自己加上的,以便今后查阅. 语音信号处理之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 在任意一个Automatic speech recognition…
今天一直在查找语音频谱之类的问题,今天正好有机会和大家共享一下. 语音信号处置之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处置>这门课,快考试了,所以也要了解了解相干的知识点.呵呵,平常没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.上面总结的是第四个知识点:MFCC.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. 在任意一个Aut…
语音信号处理之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第四个知识点:MFCC.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. 在任意一个Automatic speech recognition 系统中,第一步…
自然语言处理,语音处理.文本处理.语音识别(speech recognition),让计算机能够"听懂"人类语音,语音的文字信息"提取". 日本富国生命保险公司花170万美元安装人工智能系统,客户语言转换文本,分析词正面或负面.智能客服是人工能智能公司研究重点.循环神经网络(recurrent neural network,RNN)模型. 模型选择.每一个矩形是一个向量,箭头表示函数.最下面一行输入向量,最上面一行输出向量,中间一行RNN状态.一对一,没用RNN,如…
Mel倒谱系数:MFCC Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient)的缩写是MFCC,Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系.Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征. 用录音设备录制一段模拟语音信号后,经由自定的取样频率(如8000 Hz.16000 Hz等)采样后转换(A/D)为数字语音信号.由于在时域(time domain)上语音信号的波形变化相当快速.不易观察,因此一般都…
转载地址:http://blog.csdn.net/davidie/article/details/46929269 最近几天钻研了语音处理中的GMM-HMM模型,阅读了一些技术博客和学术论文,总算是对这个框架模型和其中的算法摸清了皮毛.在这里梳理一下思路,总结一下这几天学习的成果,也是为以后回顾时提高效率. 本文主要结合论文和博客资料来介绍我对GMM-HMM的理解,主要分为以下几个部分:第一个部分介绍语音识别总体框架,第二部分介绍典型的HMM结构和识别过程,第三部分介绍HMM的学习算法,最后补…
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记:         请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等.最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范 标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了.所以豆丁上看不出所以然,从 wiki上查.中文的wiki信息量有限,很短,而wiki的英文内容内多,…