neu 1694 Primorial vs LCM 数论】的更多相关文章

1694: Primorial vs LCM 时间限制: 4 Sec  内存限制: 128 MB[提交][状态][讨论版] 题目描述 Given N (2<=N<=10^14), what is the quotient of LCM(1,2,3,....,N) divided by multiple of all primes up to N. As the result might be too big, output it's modulo by 1000000007. For exam…
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * p2^x2 * .... ^ pn^xk y = p1^y1 * p2^y2 * .... ^ pn^yk x = p1^z1 * p2^z2 * .... ^ pn^zk 那么对于任意i (0<=i<=k) 都有 min(xi, yi, zi) = 0, max(xi, yi, zi) = n…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5382 题意:函数lcm(a,b):求两整数a,b的最小公倍数:函数gcd(a,b):求两整数a,b的最大公约数.函数[exp],其中exp是一个逻辑表达式.如果逻辑表达式exp是真,那么函数[exp]的值是1,否则函数[exp]的值是0.例如:[1+2>=3] = 1 ,[1+2>=4] = 0. 求S(n)的值. #include <bits/stdc++.h> using name…
题目链接. 题意: 给定两个数,一个G,一个L,找出两个数a,b(a<=b),使得这两个数的最大公约数为G,最小公倍数为L,且(a最小). 分析: 当a,b存在时,a一定为G. 自己证了一下,数学方面不太擅长. 假设 a 最小为 k1G (其中 k1 != 1), b为 k2G, 即 a = G,不满足条件. 那么a*b=k1*k2*G^2=L*G 这时一定有 a1 = G, b2 = k1*k2G 满足条件.即a不符合题意. 设 a = G, b = kG 因为 L*G = a*b b = L…
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) for( int j = i; j <= n; j++ ) if( lcm(i, j) ==…
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm(x, y). 考虑(ex, ey)是由其他点走过来的,不妨设当走到(x,y)时候,gcd(x, y)=k,x=k*m1, y=k*m2. 下一步有可能是(x, y+x*y/gcd(x, y))或者是(x+x*y/gcd(x,y), y). 用k和m1,m2来表示为(k*m1, k*m2+m1*m2…