引言: 大家在使用HBase的过程中,总是面临性能优化的问题,本文从HBase客户端参数设置的角度,研究HBase客户端数据批量插入性能优化的问题.事实胜于雄辩,数据比理论更有说服力,基于此,作者设计了这么一个HBase数据插入性能优化实测实验,希望大家用自己的服务器跑出的结果,给自己一个值得信服的结论. 一.客户单优化参数 1.Put List Size HBase的Put支持单条插入,也支持批量插入. 2. AutoFlush AutoFlush指的是在每次调用HBase的Put操作,是否提…
TODOList 多线程交互.RCP.事物控制.数据倾斜.HBase数据同步性 TODO List thread.join()如何互相之间通知? 线程池何时最后运行完成? MemCache性能要优于Redis,因为使用了多线程: Spring源码: HashMap,HashTable,ConcurrentMap; 过滤器和拦截器的区别: 少用Executor架构,自己编写线程池: MySQL分表实现机制: MySQL锁机制: Java内存回收为什么分代: 自动化部署:…
转自:http://www.ibm.com/developerworks/cn/java/j-lo-HBase/index.html 高性能 HBase 数据库 本文首先介绍了 HBase 数据库基本原理及专用术语,然后介绍了 HBase 数据库发布的操作 API 及部分示例,重点介绍了 Scan 方法的操作方式,接着介绍了检索 HBase 数据库时的优化方案,最后通过一个示例总结了实际项目中遇到的检索速度慢的解决方案. HBase 数据表介绍 HBase 数据库是一个基于分布式的.面向列的.主…
https://www.ibm.com/developerworks/cn/java/j-lo-HBase/index.html HBase 数据表介绍 HBase 数据库是一个基于分布式的.面向列的.主要用于非结构化数据存储用途的开源数据库.其设计思路来源于 Google 的非开源数据库”BigTable”. HDFS 为 HBase 提供底层存储支持,MapReduce 为其提供计算能力,ZooKeeper 为其提供协调服务和 failover(失效转移的备份操作)机制.Pig 和 Hive…
HBase 数据表介绍 HBase 数据库是一个基于分布式的.面向列的.主要用于非结构化数据存储用途的开源数据库.其设计思路来源于 Google 的非开源数据库"BigTable". HDFS 为 HBase 提供底层存储支持,MapReduce 为其提供计算能力.ZooKeeper 为其提供协调服务和 failover(失效转移的备份操作)机制.Pig 和 Hive 为 HBase 提供了高层语言支持,使其能够进行数据统计(可实现多表 join 等).Sqoop 则为其提供 RDBM…
目录 MySQL插入性能优化 代码优化 values 多个 一个事务 插入字段尽量少,尽量用默认值 关闭 unique_checks bulk_insert_buffer_size 配置优化 innodb_buffer_pool_size 缓冲区配置 什么是 innodb_buffer_pool_size 设置多大的 innodb_buffer_pool_size 合适? 相关参数设置 innodb_buffer_pool_size 注意事项 事务日志配置 innodb_log_file_siz…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
一.引言: 上篇文章提起关于HBase插入性能优化设计到的五个参数,从参数配置的角度给大家提供了一个性能测试环境的实验代码.根据网友的反馈,基于单线程的模式实现的数据插入毕竟有限.通过个人实测,在我的虚拟机环境下,单线程插入数据的值约为4w/s.集群指标是:CPU双核1.83,虚拟机512M内存,集群部署单点模式.本文给出了基于多线程并发模式的,测试代码案例和实测结果,希望能给大家一些启示: 二.源程序: import org.apache.hadoop.conf.Configuration;…