variable_scope和name_scope差别】的更多相关文章

先看代码:   #命名空间函数tf.variable_scope()和tf.name_scope()函数区别于使用       import tensorflow as tf       with tf.variable_scope("foo"):   a = tf.get_variable("bar", [1])   print(a.name) #foo/bar:0   b = tf.Variable("b", [1])   print(b.n…
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行一些描述性语言,跟html很像,很适合用标记性语言来描述. Tensorflow是有向图,是一个有向无环图.张量为边,操作为点,数据在图中流动. Tensorflow为每个结点都起了唯一的一个名字. import tensorflow as tf a = tf.constant(3) # name=…
tensorflow里面共享变量.name_scope, variable_scope等如何理解 name_scope, variable_scope目的:1 减少训练参数的个数. 2 区别同名变量 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共…
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
在训练深度网络时,为了减少需要训练参数的个数(比如LSTM模型),或者是多机多卡并行化训练大数据.大模型等情况时,往往就需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要.因此,tensorflow中用tf.Variable(), tf.get_variable, tf.Variable_scope(), tf.name_scope() 几个函数来实现: tf.Variable…
前言:最近做一个实验,遇到TensorFlow变量作用域问题,对tf.name_scope().tf.variable_scope()等进行了较为深刻的比较,记录相关笔记:tf.name_scope().tf.variable_scope()是两个作用域函数,一般与两个创建/调用变量的函数tf.variable() 和tf.get_variable()搭配使用.常用于:1)变量共享:2)tensorboard画流程图进行可视化封装变量.通俗理解就是:tf.name_scope().tf.vari…
name/variable_scope 的作用 充分理解 name / variable_scope TensorFlow 入门笔记 当一个神经网络比较复杂.参数比较多时,就比较需要一个比较好的方式来传递和管理这些参数.而Tensorflow提供了通过变量名称来创建或者获取变量的机制.通过这个机制,可以在不同的函数中直接通过变量的名称来使用变量,而不需要将变量通过参数进行传递. * name_scope: * 为了更好地管理变量的命名空间而提出的.比如在 tensorboard 中,因为引入了…
首先最开始应该清楚一个知识,最外面的那个[ [ [ ]]]括号代表第一维,对应维度数字0,第二个对应1,多维时最后一个对应数字-1:因为后面有用到 1 矩阵变换 tf.shape(Tensor) 返回张量的形状.但是注意,tf.shape函数本身也是返回一个张量.而在tf中,张量是需要用sess.run(Tensor)来得到具体的值的. x=[[1,2,3],[4,5,6]] shape=tf.shape(x) with tf.Session() as sess: print (shape) p…
TF有两个scope, 一个是name_scope一个是variable_scope 第一个程序: with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable("arr1", shape=[2,10],dtype=tf.float32) print name_scope # "hello/"  print arr1.name # arr1:0  print "sco…
name_scope variable_scope scope (name_scope/variable_scope) from __future__ import print_function import tensorflow as tf with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) var1 = tf.get_variable(name='var1', shap…