Spark2 Linear Regression线性回归】的更多相关文章

回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型. RegParam:lambda>=0ElasticNetParam:alpha in [0, 1] 导入包 im…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 1.问题的引出 先从一个简单的例子说起吧,房地产公司有一些关于Portland,Oregon的房子信息,下表是房子的面积和价格的对照表: Living area(feet^2) Price(1000﹩s) 2104 400 1600 330 2400 369 1416 232 3000 540 …… …… 将点画在二维坐标下表示: 那么问题就来了,面积为2000的…
Motivation 问题描述 收集到某一地区的房子面积和房价的数据(x, y)42组,对于一套已知面积的房子预测其房价?   由房价数据可视化图可以看出,可以使用一条直线拟合房价.通过这种假设得到的预测值和真实值比较接近. Model 模型 将现实的问题通过数学模型描述出来. m 个 样本(example)组成训练集(training set),每一个样本有n个特征(feature)和一个标签(label).目的是,通过一个数学模型(algorithm)和参数(parameters)将每一…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 在上篇博客中,我们提出了线性回归的概念,给出了一种使代价函数最小的方法:梯度下降法.在本篇博客中,我们给出另一种方法:正规方程. 是关于的函数,要求此函数的最小值,有人说可以求导啊,另,求出相应的即可,本文提出的就是此方法.但是由于是一个矩阵(向量是特殊的矩阵),我们需要关于矩阵求导方面的知识. 1 矩阵求导 假设函数将阶矩阵映射到实数空间,我们定义对于阶矩阵求导…
这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Linear regression中我们人为的定义了,损失函数,然而我们并没有说明为什么我们会选择最小二乘作为我们的损失函数. 下面是一种概率解释:让我们回到一开始的式子来看一看,一开始我们定义线性回归方程,其中是我们的误差项,那么对于我们假设它是独立同分布(IID)的高斯分布,即(假设它为高斯分布,我们…
Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x_i\)是\(n\)维列向量 \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\). 为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1},…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍.     本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:…