一.中文分词 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. Lucene中对中文的处理是基于自动切分的单字切分,或者二元切分.除此之外,还有最大切分(包括向前.向后.以及前后相结合).最少切分.全切分等等. 二. 中文分词技术分类 我们讨论的分词算法可分为三大类: 1.基于词典:基于字典.词库匹配的分词方法:(字符串匹配.机械分词法) 2.基于统计:基于词频…
中文分词就是将一个汉字序列分成一个一个单独的词. 现有的分词算法有三大类: 基于字符串匹配的分词:机械分词方法,它是按照一定的策略将待分析的字符串与一个充分大的机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功. 基于理解的分词方法:通过让计算机模拟人对句子的理解,达到识别词的效果,特点就是在分词的同时进行句法,语义的分析,利用句法信息和语义信息来处理歧义现象.通常包括三个部分:分词子系统,句法语义子系统,总控部分. 基于统计的分词方法:给出大量的已经分词的文本,利用统计机器学习模型…
分词是中文自然语言处理的基础.目前常用的分词算法有 1.张华平博士的NShort中文分词算法. 2.基于条件随机场(CRF)的中文分词算法. 这两种算法的代表工具包分别是jieba分词系统和哈工大的LTP语言技术平台.下面就分别演示这两个工具的使用方法. jieba包有两个分词函数,cut和cut_for_search,后者主要为搜索引擎设计,粒度更细.jieba.cut(sentence,cut_all=False,HMM=True)方法接受三个输入参数: 需要分词的字符串:cut_all 参…
NLP & 中文分词 中文分词 (Word Segmentation, WS) 指的是将汉字序列切分成词序列. 中文自然语言处理系统 https://www.ltp-cloud.com/intro#cws https://ltp.ai/…
layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true typora-root-url: .. 本博客选自https://dxzmpk.github.io/,如果想了解更多关于transformers模型的使用问题,请访问博客源地址. 概括 这篇文章将对Bert等模型使用的分词技术进行介绍.同时会涉及这些分词器在huggingface tokenizers库…
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python setup.py install 模式 默认模式,试图将句子最精确地切开,适合文本分析 全模式,把句…
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python setup.py install 模式 默认模式,试图将句子最精确地切开,适合文本分析 全模式,把句…
https://www.jianshu.com/p/dfdfeaa7d01f 1 HMM模型   image.png 马尔科夫过程:   image.png   image.png 以天气判断为例:引出隐马尔科夫模型   image.png   image.png 以天气判断为例:由海藻信息推测天气   image.png 于是我们可以将这种类型的过程建模为有一个隐藏的马尔科夫过程和一个与这个隐藏马尔科夫过程概率相关的并且可以观察到的状态集合.这就是本文重点介绍的隐马尔可夫模型. 隐马尔可夫模型…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比较执着于Rwordseg,并不代表各位看管执着于我的执着,推荐结巴分词包,小巧玲珑,没有那么多幺蛾子,而且R版本和python版本都有,除了词性标注等分词包必备功能以外,jiebaR还加入了一些基础的文本分析算法,比如提取关键字(TFIDF).分析文本相似性等等,真是老少咸宜. 同时官网也有一个在线jieba…
本篇分享的依然是关于hanlp的分词使用,文章内容分享自 gladosAI 的博客,本篇文章中提出了一个问题,hanlp分词影响了实验判断结果.为何会如此,不妨一起学习一下 gladosAI 的这篇文章. 学习内容 在之前的实验中得到了不在词向量里的词与分词结果,结果有500多个词不在词向量里,解决方案就是重新分词,或再追加训练这些词到词向量里.但后者相对麻烦且目前样本量不大.我跟据词向量的作者[6]所使用的分词工具来分词,会比不同工具(jieba)的效果要好,因为都是同一模式的分词,分出来的词…