转载请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/6293807.html java.util.concurrent.PriorityBlockingQueue内部用二叉堆实现了一个优先队列,所有插入的元素必须实现java.lang.Comparable接口.由于完全二叉树可以用数组来表示,所以队列内部元素存放在可变长度数组queue里. private transient Object[] queue; //用于存放元素的数组 一 插入元素入队 p…
[0]README 0.1)为什么有这篇文章?因为 Dijkstra算法的优先队列实现 涉及到了一种新的数据结构,即优先队列(二叉堆)的操作需要更改以适应这种新的数据结构,我们暂且吧它定义为Distance, 而不是单纯的int类型: 0.2)本文源代码均为原创, int类型的优先队列(二叉堆)的操作实现,参见http://blog.csdn.net/PacosonSWJTU/article/details/49498255, (并比较他们的打印结果,很有必要) [1]因为 Dijkstra算法…
二叉堆 1 二叉堆的定义 堆是一个完全二叉树结构(除了最底下一层,其他层全是完全平衡的),如果每个结点都大于它的两个孩子,那么这个堆是有序的. 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组中按照层级存储(不用数组的第一个位置) 2 二叉堆的性质 最大的元素在a[1] (root结点) 每个k的父亲在k/2 每个k的孩子在k*2和k*2+1 3 二叉堆的操作 3.1 上浮(孩子大于父亲)——对应插入操作 循环,每次比较自己和父亲,如果比父亲大就交换,直到root. 3.2 插入 先把元…
package practice; import edu.princeton.cs.algs4.StdRandom; public class TestMain { public static void main(String[] args) { int[] a = new int[20]; for (int i = 0; i < a.length; i++) { int temp = (int)(StdRandom.random()*100); a[i] = temp; } for (int…
二叉堆简介 平时所说的堆,若没加任何修饰,一般就是指二叉堆.同二叉树一样,堆也有两个性质,即结构性和堆序性.正如AVL树一样,对堆的以此操作可能破坏者两个性质中的一个,因此,堆的操作必须要到堆的所有性质都被满足时才能终止. 结构性质 堆是一棵完全填满的二叉树,因为完全二叉树很有规律,所以它可以用一个数组表示而不需要指针.如下图所示,图2中的数组对应图1中的堆.                   图1:二叉堆                                            …
优先队列简单介绍: 操作系统表明上看着是支持多个应用程序同一时候执行.其实是每一个时刻仅仅能有一个进程执行,操作系统会调度不同的进程去执行. 每一个进程都仅仅能执行一个固定的时间,当超过了该时间.操作系统就会暂停当前执行的进程,去调度其他进程来执行. 实现这样的进程调度的一种方法是使用队列. 開始的时候进程被放在队列的末尾,调度程序将重复提取队列中的第一个进程来执行.直到执行完成或时间片用完,若进程没有执行完成则将该进程放入队列的末尾.这样的策略不是特别合适,由于可能一些短的进程须要等待非常长的…
堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). 但是二叉堆,需要满足一些特殊性质: 其一.二叉堆一定是一棵完全二叉树 (完全二叉树可以用数组表示,见下面) 完全二叉树缺失的部分一定是在右下方.(每层一定是从左到右的顺序优先存放) 完全二叉树的结构,可以简单理解成按层安放元素的.(所以数组是不错的底层实现) 其二.父节点一定比子节点大 (针对大顶堆…
Python实现二叉堆 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树).二叉堆有两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆:父结点的键值总是小于或等于任何一个子节点的键值. 优先队列的二叉堆实现 在前面的章节里我们学习了"先进先出"(FIFO)的数据结构:队列(Queue).队列有一种变体叫做"优先队列"(Priority Queue).优先队列的出队(Dequeue)操作和队列一样,都是从…
优先队列(二叉堆)BuildHeap操作 \(BuildHeap(H)\)操作把\(N\)个关键字作为输入并把它们放入空堆中.显然,这可以使用\(N\)个相继的\(Insert\)操作来完成.由于每个\(Insert\)将花费\(O(1)\)平均时间以及\(O(\log N)\)的最坏情形时间,因此该算法的总的运行时间则是\(O(N)\)的平均时间而不是\(O(N \log N)\)最坏情形时间. 一般的算法是将\(N\)个关键字以任意顺序放入树中,保持 结构性 .此时,如果\(Percolat…
哟,有实用价值 可以看到,加入是随机的,而吐出是顺序的. # coding = utf-8 # 使用二叉堆实现的优先队列(列表) class BinaryHeap: def __init__(self): self.heap_list = [0] self.current_size = 0 def perc_up(self, i): while i // 2 > 0: if self.heap_list[i] < self.heap_list[i//2]: self.heap_list[i//…