machine learning 线性回归实战】的更多相关文章

matlab 线性回归实战 统一 输入时列向量 输出也是列向量 中间的过程可以出现行向量或者列向量,但是不能影响输入和输出为列向量 参数运算的输入都不会只是一个实数,要么是列向量,要么是一个矩阵 对于矩阵,取数据也是一列一列的去,也就是\(X(:1)\),\(X(:2)\)等 命令的时候为向量和矩阵加后缀, 如X_norm, x_new…
TensorFlow & Machine Learning TensorFlow 实战 传统方式 规则 + 数据集 => 答案 无监督学习 机器学习 神经元网络 答案 + 数据集 => 规则 打标签 / 信号标签 有监督学习 TensorFlow env Anaconda Jupyter Lab Jupyter Notebook Python 3 import tensorflow as ts print("ts = ", ts) refs https://ot.i…
机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.Ada…
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K-近邻(KNN).贝叶斯分类,读者可根据以下内容自行"充电"(持续更新中): <Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM: https://www.zybuluo.com/tianxingjian/note/1755051…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
    最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]     最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归) [数据]     1.准备一个ex1data1.txt,第一列为年龄,第二列为价格     2.导入matla…
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括每个训练样本对应的标签.然后给你一个新的测试样本T,问你测试样本的标签预测是什么,K近邻的方法就是找到T到D中每一个样本的相似度,然后根据相似度大小对D中样本排序,取前K个最相似的样本的标签的众数作为测试样本T的标签(即前K个样本投票决定).具体相似度怎么度量,是根据测试样本到D中每个训练样本的距离…
MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素…
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectoriza…
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们容易忽略的地方.如果不考虑模型的适用情况,就只会得到错误的模型.下面来看一下,使用最小二乘回归模型需要满足哪些假设,以及如果不满足这些假设条件会产生怎样的后果. 最小二乘回归模型的5个基本假设: 自变量(X)和因变量(y)线性相关 自变量(X)之间相互独立 误差项(ε)之间相互独立 误差项(ε)呈正态分布,期…