目录 01 Introduction Bridging this gap between AI and humans is an important direction. FSL can also help relieve the burden of collecting large-scale supervised data. Driven by the academic goal for AI to approach humans and the industrial demand for…
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set 03 Transforming Samples from Similar Data Sets Discussion and Summary 原文链接:小样本学习与智能前沿 上一篇:A Survey on Few-Shot Learning | Intro…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding Learning 02.1 Task-Specific Embedding Model. 02.2 Task-Invariant Embedding Model. 02.3 Hybrid Embedding Model. 03 Learning with External Memory 03.1 R…
One-shot learning Zero-shot learning Multi-shot learning Sparse Fine-grained Fine-tune 背景:CVPR 2018收录了4篇关于小样本学习的论文,而到了CVPR 2019,这一数量激增到了近20篇 那么什么是小样本学习呢? 在机器学习里面,训练时你有很多的样本可供训练,而如果测试集和你的训练集不一样,那么这时候称为支持集support data.在测试时,你会面对新的类别(通常为 5 类),其中每个类别仅有极少量…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中,不可能从一开始就准确预测出一些信息和其他超级参数,例如:神经网络分多少层:每层含有多少个隐藏单元:学习速率是多少:各层采用哪些激活函数.应用型机器学习是一个高度迭代的过程. 从一个领域或者应用领域得来的直觉经验,通常无法转移到其他应用领域,最佳决策取决于 所拥有的数据量,计算机配置中输入特征的数量,…
目录 1. 简介 2. BLUP类模型 3. Bayesian类模型 4. 机器学习 5. GWAS辅助的GS 6. 杂交育种 7. 多性状 8. 长期选择 9. 预测准确性评估 10. GS到植物育种 11. 未来展望 2020年10月张志武老师联合多家单位的大佬撰写的植物GS育种的最新进展,目前还只是预印版(改到第二版).这篇综述涉及到GS在植物领域应用的最新进展,长达48页.不同于其他的综述描写空洞宽泛,这一篇特别对模型方法进行了介绍,正好解决了我的需求.缺点就是可能重点说明了他们自己开发…
转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A survey of best practices for RNA-seq data analysis .由于文章较长和枯燥,小编认为重要的信息,已经加粗加红,可以直接看重要信息.不要问我为啥这么好,请叫我雷锋. 摘要 现在RNA-seq数据使用广泛,但是没有一套流程可以解决所有的问题.我们重点关注RNA-…
2014 TKDE(IEEE Transactions on Knowledge and Data Engineering) 张敏灵,周志华 简单介绍 传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语义,含有多个标签.本综述主要介绍了多标签学习的一些相关内容,包括相关定义,评价指标,8个多标签学习算法,相关的其它任务. 论文大纲 相关定义:学习任务,三种策略 评价指标:基于样本的评价指标,基于标签的评价指标 学习算法:介绍了8个有代表性的算法,4个基于问题转化的算法和4…