pytorch(03)tensor的操作】的更多相关文章

https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor. device: 这个参数表示了tensor将会在哪个设备上分配内存.它包含了设备的类型(cpu.cuda)和可选设备序号.如果这个值是缺省的,那么默认为当前的活动设备类型. require_grad: 这个标志表明这个tensor的操作是否会被…
不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天才发现pytorch借鉴了很多torch7的东西. pytorch大量借鉴了torch7下面lua写的东西并且做了更好的设计和优化. https://github.com/torch/torch7/tree/master/doc pytorch中的Tensor是在TH中实现的.TH = torch…
#tensor和numpy import torch import numpy as np numpy_tensor = np.random.randn(3,4) print(numpy_tensor) #将numpy的ndarray转换到tendor上 pytorch_tensor1 = torch.Tensor(numpy_tensor) pytorch_tensor2 = torch.from_numpy(numpy_tensor) print(pytorch_tensor1) print…
#Tensor索引操作 ''''' Tensor支持与numpy.ndarray类似的索引操作,语法上也类似 如无特殊说明,索引出来的结果与原tensor共享内存,即修改一个,另一个会跟着修改 ''' import torch as t a = t.randn(3,4) '''''tensor([[ 0.1986,  0.1809,  1.4662,  0.6693], [-0.8837, -0.0196, -1.0380,  0.2927], [-1.1032, -0.2637, -1.497…
转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pytorch中,把numpy.array数据转换到张量tensor数据的常用函数是torch.from_numpy(array)或者torch.Tensor(array),第一种函数更常用.下面通过代码看一下区别: import numpy as np import torch a=np.arange(…
张量操作 一.张量的拼接 torch.cat() 功能:将张量按维度dim进行拼接,且[不会扩张张量的维度] tensors:张量序列 dim:要拼接的维度 torch.cat(tensors, dim=0, out=None) flag = True # flag = False if flag: t1 = torch.full((4, 4), 10) t2 = torch.full((4, 4), 5) print(t1) print(t2) t3 = torch.cat([t1, t2],…
原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到这里,以防自己在使用PyTorch做实验时,忘记这些方法应该传什么参数. 总结的方法包括: Tensor求和以及按索引求和:torch.sum() torch.Tensor.indexadd() Tensor元素乘积:torch.prod(input) 对Tensor求均值.方差.极值: torch…
  CUDA(Compute Unified Device Architecture)是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作.本地安装环境为Windows10,Python3.7.8和CUDA 11.6,安装PyTorch最新稳定版本1.12.1如下: pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.or…
原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵.与Numpy中的Array类似.Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到.通过使用Type函数可以查看变量类型.一般系统默认是torch.FloatTensor类型.例如data = to…
torch.ger(vec1, vec2, out=None) → Tensor Outer product of vec1 and vec2. If vec1 is a vector of size nn and vec2 is a vector of size mm, then out must be a matrix of size (n×m). Parameters: vec1 (Tensor) – 1-D input vector vec2 (Tensor) – 1-D input v…
首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Variable对象的操作,操作会被记录,可通过grad_fn属性查看上一次的操作,可通过data属性访问原始张量,grad can be implicitly created only for scalar outputs--------------------- 作者:头发光了你就强了 来源:CSD…
基本类型 torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU tensor GPU tensor 32-bit floating point torch.FloatTensor torch.cuda.FloatTensor 64-bit floating point torch.DoubleTensor torch.cuda.DoubleTensor 16-bit floatin…
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,d2...], FloatTensor of size[d1,d2,...]2.对于pytorch,并不能表示string类型的数据类型,一…
涉及一些pytorch的API内容在此进行整理 损失函数:Binary-Cross-Entropy loss criterion = nn.BCECriterion() 创建一个标准来度量目标和输出之间的二值交叉熵 $CrossEntropy(t,o) = -(t*log(o) + (1-t) * log(1-o)) $ 这是用来测量误差的重建,例如一个自动编码器. 卷积操作 2Dconv spatial conv module = nn.SpatialConvolution(nInputPla…
 JAVA操作mysql所需jar包:mysql-connector-java.jar代码: import java.sql.*; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import com.mysql.jdbc.Connection; import com.mysql.jdbc.Statement; public class ConnectMySQL { public stati…
RadioButton操作 取得RadioButton的选中值,被选中的radio只有一个值,所以直接用val()  $('#btn1').click(function () {                 $(':radio:checked').each(function () {//遍历,因为只能获取一个                     alert($(this).val());                 });             });             $(…
ORM ORM 全拼Object-Relation Mapping,中文意为 对象-关系映射.主要实现模型对象到关系数据库数据的映射. 1.优点 : 只需要面向对象编程, 不需要面向数据库编写代码. 对数据库的操作都转化成对类属性和方法的操作. 不用编写各种数据库的sql语句. 实现了数据模型与数据库的解耦, 屏蔽了不同数据库操作上的差异. 不再需要关注当前项目使用的是哪种数据库. 通过简单的配置就可以轻松更换数据库, 而不需要修改代码. 2.缺点 : 相比较直接使用SQL语句操作数据库,有性能…
系列目录    [已更新最新开发文章,点击查看详细]  本篇将使用基本的代码示例来表示如何使用xBIM.我们将介绍持久存储的四个基本功能,即 CRUD(创建,检索,更新和删除).以下示例通常适用于IFC4,但您也可以使用IFC2x3.实际上大多数代码都是IFC版本不可知的,因为它使用的IFC4接口也适用于IFC2x3.用于开发这些示例的示例数据可以在此处下载 .   一.创建 以下示例将创建没有任何几何体的简单IFC模型.如您所见,IfcStore需要一个XbimEditorCredential…
tensor默认是不求梯度的,对应的requires_grad是False. 1.指定数值初始化 import torch #创建一个tensor,其中shape为[2] tensor=torch.Tensor([2,3]) print(tensor)#tensor([2., 3.]) #创建一个shape为[2,3]的tensor tensor=torch.Tensor(2,3)#会随机数值,等价于这种方式 tensor=torch.Tensor(size=(2,3)) print(tenso…
OLE整理: 1.定义,分别对应EXCEL,workbook(工作簿),sheet(页),单元格 DATA: EXCEL_OBJ TYPE OLE2_OBJECT, BOOK_OBJ TYPE OLE2_OBJECT, SHEET_OBJ TYPE OLE2_OBJECT, CELL_OBJ TYPE OLE2_OBJECT. 2.方法说明: CREATE OBJECT name_obj 'app'."创建APP应用类的一个对象obj_name实例 SET PROPERTY OF name_ob…
一.数据库的操作 1.1.新增 使用SSMS图形界面创建数据库 在SQL Server 2008 中,通过SQL Server Management Studio 创建数据库 使用Transact-SQL 语句创建数据库 该命令的语法如下: CREATE DATABASE database_name [ON [PRIMARY] [<filespec> [,…n] [,<filegroupspec> [,…n]] ] [LOG ON {<filespec> [,…n]}]…
import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化为nparray b = a.numpy() print(b,type(b),type(a)) #获取张量的形状 a = torch.tensor(np.arange(30).reshape(3,2,5)) print(a) print(a.shape) print(a.size()) print(…
import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshape(3,5))) print(torch.empty([3,4])) print(torch.ones([3,4])) print(torch.zeros([3,4])) #0-1之间的随机数 print(torch.rand([2,3])) #3-10之间的随机整数 print(torch.ran…
torch.stack() 和 torch.cat() 都可以按照指定的维度进行拼接,但是两者也有区别,torch.satck() 是增加新的维度进行堆叠,即其维度拼接后会增加一个维度:而torch.cat() 是在原维度上进行堆叠,即其维度拼接后的维度个数和原来一致.具体说明如下: torch.stack(input,dim) input: 待拼接的张量序列组(list or tuple),拼接的tensor的维度必须要相等,即tensor1.shape = tensor2.shape dim…
target.permute([0, 3, 1, 2]) 一定要使用permute以及中括号 一些在我这里没起到作用的网上的例子: 1. https://blog.csdn.net/zouxiaolv/article/details/80936725 preds = to_numpy(preds)#preds是[2985x16x2] preds = preds.transpose(2, 1, 0)#preds[2x16x2985] 2. https://www.jb51.net/article/…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 Tensor Tensor可以是一个数(标量).一维数组(向量).二维数组(矩阵)或更高维的数组(高阶数据) Tensor和numpy的ndarrays类似,不同在于pytorch的tensor支持GPU加速 导包: from __future__ import print_function import torch as t 判断是否…
- 重点掌握基本张量使用及与numpy的区别 - 掌握张量维度操作(拼接.维度扩展.压缩.转置.重复……) numpy基本操作: numpy学习4:NumPy基本操作 NumPy 教程 1. Tensorflow Tensorflow一些常用基本概念与函数(1,2,3,4) tensorflow与numpy函数的选择 Tensorflow 和numpy区别 相同点: 都提供n位数组 不同点: numpy支持ndarray,而Tensorflow里有tensor:numpy不提供创建张量函数和求导…
一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.sum(b)功能等价. 从存储的角度讲,对Tensor的操作也可以分为两类: (1)不修改自身数据,如a.add(b),加法结果返回一个新的tensor: (2)修改自身数据,如a.add_(b),加法结果仍存在a中,a被改变. 函数名以_结尾的称为inplace方式. 二.Tensor的创建 常见的…
由于之前的草稿都没了,现在只有重写…. 我好痛苦 本章只是对pytorch的常规操作进行一个总结,大家看过有脑子里有印象就好,知道有这么个东西,需要的时候可以再去详细的看,另外也还是需要在实战中多运用. 本章导视图 Tensor attributes: 在tensor attributes中有三个类,分别为torch.dtype, torch.device, 和 torch.layout 其中, torch.dtype 是展示 torch.Tensor 数据类型的类,pytorch 有八个不同的…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法. 上一篇文章当中我们简单介绍了一下如何创建一个Tensor,今天我们继续深入Tensor的其他用法. tensor操作 size()和shape 我们可以用size()函数或者直接调用tensor当中的shape属性获取一个tensor的大小,这两者是等价的,一般情况下我们用前者多一些. view 我们可以通过view改变一个tensor的shape…