目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LDA线性判别分析(Linear Discriminant Analysis)也是一种特征提取.数据压缩技术.在模型训练时候进行LDA数据处理可以提高计算效率以及避免过拟合.它是一种有监督学习算法. 与PCA主成分分析(Principal Component Analysis)相比,LDA是有监督数据压…
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Principal Component Analysis),主成分分析,是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 二.PCA的用途及原理: 用途:数据降维 原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪. PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性.                                      …
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 1.2.2.4 为什么是局部相似性 1.2.2.5 为什么选择高斯和t分布 2 python实现 参考内容 1.概述 1.1 什么是TSNE TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding). TSNE是一种可视化工具,将高位数据降到2…
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,…
Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的好处: 使得数据集更易使用 降低很多算法计算开销 去除噪声 使得结果易懂 主成分分析(principal component analysis,PCA)的思想是将数据转换到新的坐标系,这个坐标系的选择是由数据本身决定的,第一维是原始数据中方差最大的方向,第二个是与第一维正交且方差最大的,一直重复..…
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来.网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧. 用matlab计算这个例子 z=[1,2;3,6;4,2;5,2] cov(z) ans = 2.9167 -0.3333 -0.3333 4.0000 可以看出,matlab计算协方差过程…
基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主成分分析代码实现 一.前言及回顾 从上一篇<PCA数据降维原理及python应用(葡萄酒案例分析)>,我们知道,主成分分析PCA是一种无监督数据压缩技术,上一篇逐步自行写代码能够让我更好地理解PCA内部实现机制,那知识熟悉以及技术成熟后我们可以运用什么提高编码效率? 答案就是:基于sklearn的…