目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization Support Vector Machine (3) : 再谈泛化误差(Generalization Error) Support Vector Machine Python 代码实现 Support Vector Machine(1) : 简单SVM原理 1. background 对一个二值的…
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习.分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题.作者以为,类似的根据样本进行学习的方法还有基于案例的推理(Case-Based Reasoning),决策树归纳算法C4.5等,以后将详细阐述这两种方法. (2)过学习问题:训练误差过小导致推广能力下降,即真实风险的增加. (…
与Logistuc Regression相比,SVM是一种优化的分类算法,其动机是寻找一个最佳的决策边界,使得从决策边界与各组数据之间存在margin,并且需要使各侧的margin最大化.比较容易理解的是,从决策边界到各个training example的距离越大,在分类操作的差错率就会越小.因此,SVM也叫作Large Margin Classifier. 最简单的情况是,在二维平面中的,线性可分情况,即我们的training set可以用一条直线来分割称为两个子集,如下图所示.而在图中我们可…
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的SVM训练方法必须使用复杂的方法,并需要昂贵的第三方二次规划工具.而SMO算法较好地避免了这一问…
SVM: 1. 线性与非线性 核函数: 2. 与神经网络关系 置信区间结构: 3. 训练方法: 4.SVM light,LS-SVM: 5. VC维 u-SVC 与 c-SVC 区别? 除参数不同外,两者基本一样. c-SVC  c∈(0,∞) u-SVC  c∈[0,1] c是一个很好的特征,它与支持向量的比率和训练误差的比率 相关. SVM求解QR问题中,变量维数=训练样本个数.从而使其中矩阵元素的个数 是 训练样本个数的平方. SVM标准算法中,需要求解复杂的QP问题,理论上获全局最优解,…
前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此模型之上调用测试数据集进行分类测试:4. 查看分类结果:5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止. 参数调整策略 综合来说,主要有以下四个方面需要调整: 1. 选择合适的核函数:2. 调整误分点容忍度参数cost:3. 调整各核函数的参数:4. 调整各样本的权重. 其中,对于特…
  支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learning 很流行,SVM 仍然是一种很有的机器学习算法,在数据集小的情况下能比 Deep Learning 取得更好的结果.   本文将详细介绍线性 SVM,非线性 SVM 涉及到的 kernel,本文中没有介绍.我将从以下两个方面展开介绍线性 SVM: 间隔和支持向量 对偶问题 1. 间隔和支持向量  …
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classification)的模式识别应用中. 支持向量机的最大特点是既能够最小化经验损失(也叫做经验风险.或者经验误差),同时又能够最大化几何间距(分类器的置信度),因此SVM又被称为最大边缘区(间距)的分类器. 根据具体应用场景的不同,支持向量机可以分为线性可分SVM.线性SVM和带有核函数的SVM.最终的结果都是得…
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时间去查阅资料,因为数学较差的原因,理解起来相当慢,不过探索的乐趣也就在于不断的打破瓶颈向前,OK继续.上述的问题等价于: 而后我们引入广义拉格朗日函数,利用拉格朗日对偶性来求解此问题.首先明确一下,我们做这些工作的目的是,消去约束条件,为了好求解问题.广义拉格朗日函数为: 上式分为两部分,拉格朗日前辈的思路是…
1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别(y可以取或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( $W^T$中的T代表转置): $W^Tx+b=0$ 这个可以说是我们熟悉的logistic regression的变形. Logistic…