首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【BZOJ4816】数字表格(莫比乌斯反演)
】的更多相关文章
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i,j的最大公约数.Doris的表格中共有n×m个数,…
【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演
题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i, j的最大公约数.Doris的表格中共有n×m个数,她想知道这些数的乘积是多少.答案对10^9+7取模. 输入 有多组测试数据. 第一个一个数T,表示数据组数. 接下来T行,每行两个数n,m T<=100…
BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i=1}^N \prod\limits_{j=1}^M f[gcd(i,j)] & = \prod\limits_{d=1}^N f[d]^{\sum\limits_{i=1}^\frac{N}{d} \sum\limits_{j=1}^\frac{M}{d}[gcd(i,j)==1]} \\ &…
BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4…
[Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ \prod_{d=1}^n \prod_{i=1}^{\frac{n}{d}}\prod_{i=1}^{\frac{m}{d}} f[d]^{[(i,j)=1]} \] 套路一直推完 \[ \prod_{D=1}^n \prod_{d|D} f[d]^{\mu(\frac{D}{d}) \cdot…
【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq n}\sum_{j\leq m}\frac{i*j}{gcd(i,j)}$$ $$ans=\sum_{d\leq min(n,m)}1/d\sum_{i\leq n}\sum_{j\leq m}[gcd(i,j)=d]i*j$$ $$ans=\sum_{d\leq min(n,m)}d\sum_{i\leq…
[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x,y) N,M<=10000000T<=10000N,M <= 10000000\newline T<= 10000N,M<=10000000T<=10000 题目分析 直接开始变换,假设N<M Ans=∑x=1N∑y=1Mxy(x,y)=∑T=1N1T∑x=1N∑y=…
BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Description\) 用\(f[i]\)表示\(Fibonacci\)数列的第\(i\)项,求\[\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\mod (10^9+7)\] \(Solution\) \[ \begin{aligned} Ans &=\prod_{i=1}^n\pr…