bzoj 3309】的更多相关文章

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))$ $\quad\quad=\sum_{g=1}^{n}f(g)\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d)\lfloor \frac{n}{gd} \rfloor\lfloo…
$n=p_1^{a_1}p_2^{a_2}…p_k^{a_k},p_i$为素数,定义$f(n)=max(a_1,a_2…,a_k)$. 给定a,b<=1e7求$\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}f((i,j))$ 先简化. \begin{eqnarray*} \sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}f((i,j)) &=& \sum_{d=1}^{min(a,b)}\sum\limits_{…
3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status][Discuss] Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1.…
http://www.lydsy.com/JudgeOnline/problem.php?id=3309 \[\sum_{T=1}^{min(a,b)}\sum_{d|T}f(d)\mu(\frac Td)\lfloor\frac aT\rfloor\lfloor\frac bT\rfloor\] 设\(g(n)=\sum\limits_{d|n}f(d)\mu(\frac nd)\). 假设n的质因子分解为\(p_1^{c_1},p_2^{c_2}\dots p_m^{c_m}\),设最大的质…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1}^{a}\sum_{j=i}^{b}f(gcd(i,j))$ T<=10000 1<=a,b<=10^7 解析:考虑a<b 枚举最大公约数d,得到: $$Ans=\sum_{d=1}^a f(d)\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然后 f( ) 还不能一个就花 log 的时间,所以要分析性质. 设 n 一共 m 个质因数,其中最大的指数是 t . 已有 Σ(d|n) f(d)*u(n/d) ,如果 u( ) 的部分含有指数>=2的质因子,就无贡献:所以 u( ) 里每种质因数选1个或0个,一共 2^m 种. 如果 n 里有一个…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: 在预处理的筛中也犯了愚蠢的错误...总之全仰仗 Narh 提点了... 所以具体题解就看这里咯:https://www.cnblogs.com/Narh/p/9740786.html 代码如下: #include<iostream> #include<cstdio> #include…
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 10000 7558588 9…
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D} f(d)\mu(\frac{D}{d}) \frac{n}{D} \frac{m}{D} \] 这次函数是\(g = (f*\mu )\),\(f\)显然不是积性函数,但我们照样可以用线性筛 具体做法我晚上回家再补吧草稿纸忘带了... 补: \(g(p^a)=p-(p-1)\) 因为卷了\(\…
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数.接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6…