Backbone 网络-ResNet 论文解读】的更多相关文章

目录 目录 目录 前言 摘要 1.介绍 2.深度残差网络的分析 3.On the Importance of Identity Skip Connection 4.On the Usage of Activation Functions 4.1.Experiments on Activation 4.2.Analysis 5.Results 6.结论 参考资料 前言 本文的主要贡献在于通过理论分析和大量实验证明使用恒等映射(identity mapping)作为快捷连接(skip connect…
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 0x02 解读思路 2.1 Memorization 和 Generalization 2.1.1 Memorization 2.1.2 Generalization 2.2 发展脉络 0x03 DNN 3.1 深度模型思路 3.2 DNN模型 3.3 工作机制 3.4 模型特点 0x04 DIN…
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的问题 1.2.2 DIEN创新 1.3 名词解释 0x02 总体概要 2.1 模型架构 0x03 兴趣抽取层 3.1 之前工作 3.2 GRU 3.3 辅助损失 3.3.1 辅助损失 3.3.2 全局损失 3.3.3 辅助损失作用 3.4 总结 0x04 兴趣进化层 4.1 演化规律 4.2 AUG…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 188 人赞同了该文章 前言 anchor-free目标检测属于anchor-free系列的目标检测,相比于CornerNet做出了改进,使得检测速度和精度相比于one-stage和two-stage的框架都有不小的提高,尤其是与YOLOv3作比较,在相同速度的条件下,CenterNet的精度比Y…
Highway Networks 论文地址:arXiv:1505.00387 [cs.LG] (ICML 2015),全文:Training Very Deep Networks( arXiv:1507.06228 ) 基于梯度下降的算法在网络层数增加时训练越来越困难(并非是梯度消失的问题,因为batch norm解决梯度消失问题).论文受 RNN 中的 LSTM.GRU 的 gate 机制的启发,去掉每一层循环的序列输入,去掉 reset gate (不需要遗忘历史信息),仍使用 gate 控…
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR2019的paper,来自华科和地平线,文章提出了Mask Scoring R-CNN的框架是对Mask R-CNN的改进,简单地来说就是给Mask R-CNN添加一个新的分支来给mask打分从而预测出更准确的分数. 源码地址:https://github.com/zjhuang22/masksco…
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原作者Missouter,博客园链接https://www.cnblogs.com/missouter/,欢迎交流. [Abstract] 该论文提出了一种结合图像中语义.几何学与稀疏.稠密信息的3D目标检测算法. 该算法用Faster R-CNN接收作为立体输入的左右图像,同时检测.联系两幅图像中的…
CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换的跨模态行人重识别 摘要: 跨模态行人重识别对智能视频分析是一个难点,而又关键的技术.过去的研究主要集中在,将嵌入式不同模态放到同一个特征空间中,来训练常用的表现形式.但是,仅仅训练这些常用的特性,意味着会丢失大量的信息,降低特征显著性的上限. 本文中,通过推荐一个新的特定跨模态特征转换算法(称为c…
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https://arxiv.org/pdf/1912.02184.pdf 摘要 在这篇文章中,我们提出用一个受人类感知启发的注意力模型来扩充一个现代的神经网络结构.具体地说,我们对一个神经模型进行了逆向训练和分析,该模型包含了一个受人启发的视觉注意成分,由一个自上而下的循环顺序过程引导.我们的实验评估揭示了关于这个…