HDFS小文件处理——Mapper处理】的更多相关文章

处理小文件的时候,可以通过org.apache.hadoop.io.SequenceFile.Writer类将所有文件写出到一个seq文件中. 大致流程如下: 实现代码: package study.smallfile.sequence_one; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import…
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位. 文件系统中1个块是由连续的8个扇区组成. HDFS: 默认文件大小64M(或者是128M) hive小文件问题解决 问题描述 HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中…
hadoop不支持传统文件系统的挂载,使得流式数据装进hadoop变得复杂. hadoo中,文件只是目录项存在:在文件关闭前,其长度一直显示为0:如果在一段时间内将数据写到文件却没有将其关闭,则若网络中断后,则我们得到的仅仅是一个空白文件:故:最好编写小文件,这样能尽快将其关闭-----错误. [mapper 单个文件块 1:1] 由于hdfs的元数据保存在NameNode的内存中,因此创建的文件越多,所需的RAM就越多.从MapReduce角度看,小文件会导致效率低下.通常情况下,,每个Map…
hive优化 一.小文件简述 1.1. HDFS上什么是小文件? HDFS存储文件时的最小单元叫做Block,Hadoop1.x时期Block大小为64MB,Hadoop2.x时期Block大小为128MB.(在hadoop部署下可以通过dfs.block.size进行设置) 小文件就是指,在HDFS上落地的文件大小远远小于一个Block块大小的文件. 1.2. 小文件形成的原因 1.3. 小文件的危害 内存占用 小文件存储在HDFS上,对应的每个文件都会在namenode中存有相应的元数据信息…
在真实环境中,处理日志的时候,会有很多小的碎文件,但是文件总量又是很大.普通的应用程序用来处理已经很麻烦了,或者说处理不了,这个时候需要对小文件进行一些特殊的处理——合并. 在这通过编写java应用程序实现文件的合并并上传到HDFS.整体的处理思路是,从本地加载琐碎的小文件并写到HDFS中. package study.smallfile.javaapp; import java.io.File; import java.io.FileInputStream; import java.io.IO…
原文地址:https://www.cnblogs.com/ballwql/p/8944025.html HDFS总体架构 在介绍文件存储方案之前,我觉得有必要先介绍下关于HDFS存储架构方面的一些知识,在对架构有初步了解后,才会明白为什么要单独针对小文件展开介绍,小文件存储和其它文件存储区别在什么地方. 这里我只是就Hadoop生态中的存储层展开介绍,对于其它部分本文暂未描述.众所周知,HDFS是目前非常流行的分布式文件存储系统,其逻辑架构如下图所示: HDFS也是典型的Master/Slave…
上例中将HDFS里小文件通过mapper压缩到一个文件中,本例将这些小文件解压出来. mapreduce可以按SequenceFile的key进行分片. 1.mapper public class MultiOutputMapper extends Mapper<Text,BytesWritable,NullWritable,Text> { private MultipleOutputs<NullWritable,Text> multipleOutputs; private lon…
HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所有HDFS小文件数据导出到本地单个文件后,再存入HDFS [root@ncst ~]# hadoop fs -ls /test/in/small/ Found items -rw-r--r-- root supergroup -- : /test/ -rw-r--r-- root supergrou…
在生产中,无论是通过SQL语句或者Scala/Java等代码的方式使用Spark SQL处理数据,在Spark SQL写数据时,往往会遇到生成的小文件过多的问题,而管理这些大量的小文件,是一件非常头疼的事情. 大量的小文件会影响Hadoop集群管理或者Spark在处理数据时的稳定性: 1. Spark SQL写Hive或者直接写入HDFS,过多的小文件会对NameNode内存管理等产生巨大的压力,会影响整个集群的稳定运行 2. 容易导致task数过多,如果超过参数spark.driver.max…
不多说,直接上代码.  代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs7; import java.io.IOException;import java.net.URI;import java.net.URISyntaxException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataInputStream;import org.apa…
小文件合并是针对文件上传到HDFS之前 这些文件夹里面都是小文件 参考代码 package com.gong.hadoop2; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import or…
背景:hdfs上的文件最好和hdfs的块大小的N倍.如果文件太小,浪费namnode的元数据存储空间以及内存,如果文件分块不合理也会影响mapreduce中map的效率. 本例中将小文件的文件名作为key,其内容作为value生成SequenceFile 1.生成文件 //将目标目录的所有文件以文件名为key,内容为value放入SequenceFile中 //第一个参数是需要打包的目录,第二个参数生成的文件路径和名称 private static void combineToSequenceF…
配置HDFS为可挂载后: 1-可挂载后才支持非完整POSIX语义: 2-仍然不支持随机写入,仍然为“一次写入,多次读取”: 3-可能误用,导致众多小文件: : 1-使用Solr存储和检索小文件: 2-使用HBase存储小文件,使用路径和文件名称做为键: 3-使用容器格式,如SequenceFiles或Avro,合并小文件.…
HDFS 中任何一个文件,目录或者数据块在 NameNode 节点内存中均以一个对象形式表示(元数据),而这受到 NameNode 物理内存容量的限制.每个元数据对象约占 150 byte,所以如果有1千万个小文件,每个文件占用一个block,则 NameNode 大约需要2G空间.如果存储1亿个文件,则 NameNode 需要20G空间,这毫无疑问1亿个小文件是不可取的. 处理小文件并非 Hadoop 的设计目标,HDFS 的设计目标是流式访问大数据集(TB级别).因而,在 HDFS 中存储大…
目录 1 - 为什么要合并小文件 2 - 合并本地的小文件,上传到 HDFS 3 - 合并 HDFS 的小文件,下载到本地 4 - 通过 Java API 实现文件合并和上传 版权声明 1 - 为什么要合并小文件 HDFS 擅长存储大文件: 我们知道,HDFS 中,每个文件都有各自的元数据信息,如果 HDFS 中有大量的小文件,就会导致元数据爆炸,集群管理的元数据的内存压力会非常大. 所以在项目中,把小文件合并成大文件,是一种很有用也很常见的优化方法. 2 - 合并本地的小文件,上传到 HDFS…
5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术24 使用Avro存储多个小文件假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中.很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度.Yahoo估计平均每个文件需要6…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.不论什么一个文件,文件夹和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一个object占用150 bytes的内存空间. 所以,假设有10million个文件, 每一个文件相应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息. 假设规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 控制小文件的方法有: 1.应用程序自己控制…
Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加.   小文件带来的问题   关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件…
************************************************************************************************************ 1. HDFS上的小文件问题 小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件.如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you’re storing small files, then you probably h…
使用 使用使用 使用 HDFS 保存大量小文件的缺点:1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据.据统计,每一个文件需要消耗 NameNode600 字节内存.如果需要保存大量的小文件会对NameNode 造成极大的压力.2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分).如果小文件特别多,MapR…
小文件处理(自定义InputFormat) 1.需求分析 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案.将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value. 2.数据准备 one.txt yongpeng weidong weinan sanfeng luozong xiaoming two.txt longlong…
在MapReduce使用过程中.一般会遇到输入文件特别小(几百KB.几十MB).而Hadoop默认会为每一个文件向yarn申请一个container启动map,container的启动关闭是很耗时的. Hadoop提供了CombineFileInputFormat.一个抽象类.作用是将多个小文件合并到一个map中,我们仅仅需实现三个类: CompressedCombineFileInputFormat CompressedCombineFileRecordReader CompressedCom…
本文首发于公众号:五分钟学大数据 小文件产生原因 hive 中的小文件肯定是向 hive 表中导入数据时产生,所以先看下向 hive 中导入数据的几种方式 直接向表中插入数据 insert into table A values (1,'zhangsan',88),(2,'lisi',61); 这种方式每次插入时都会产生一个文件,多次插入少量数据就会出现多个小文件,但是这种方式生产环境很少使用,可以说基本没有使用的 通过load方式加载数据 load data local inpath '/ex…
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成         缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包.     SequeuesF…
默认是从hdfs读取文件,也可以指定sc.textFile("路径").在路径前面加上hdfs://表示从hdfs文件系统上读 本地文件读取 sc.textFile("路径").在路径前面加上file:// 表示从本地文件系统读,如file:///home/user/spark/README.md ‍ 网上很多例子,包括官网的例子,都是用textFile来加载一个文件创建RDD,类似sc.textFile("hdfs://n1:8020/user/hdfs…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.如果在HDFS中存储小文件,那么在HDFS中肯定会含有许许多多这样的小文件(不然就不会用hadoop了).而HDFS的问题在于无法很有效的处理大量小文件. 任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,没一个object占用150 bytes的内存空间.所以,如果有10million个文件,没一个文件对应一个block,那么就将要消耗namenode 3G…
一.概述 小文件是指文件size小于HDFS上block大小的文件.这样的文件会给hadoop的扩展性和性能带来严重问题.首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1000 0000个小文件,每个文件占用一个block,则namenode大约需要2G空间.如果存储1亿个文件,则namenode需要20G空间.这样namenode内存容量严重制约了集群的扩展. 其次,访问大量小文件速度远远小于访问几个大文件.HDFS最初是为流式访…
目前平台使用Kafka + Flume的方式进行实时数据接入,Kafka中的数据由业务方负责写入,这些数据一部分由Spark Streaming进行流式计算:另一部分数据则经由Flume存储至HDFS,用于数据挖掘或机器学习.HDFS存储数据时目录的最小逻辑单位为“小时”,为了保证数据计算过程中的数据完整性(计算某个小时目录中的数据时,该目录的数据全部写入完毕,且不再变化),我们在Flume中加入了如下策略:   每五分钟关闭一次正在写入的文件,即新创建文件进行数据写入.   这样的方式可以保证…
1.背景 在实际项目中,输入数据往往是由许多小文件组成,这里的小文件是指小于HDFS系统Block大小的文件(默认128M), 然而每一个存储在HDFS中的文件.目录和块都映射为一个对象,存储在NameNode服务器内存中,通常占用150个字节. 如果有1千万个文件,就需要消耗大约3G的内存空间.如果是10亿个文件呢,简直不可想象.所以在项目开始前, 我们选择一种适合的方案来解决本项目的小文件问题 2.介绍 本地 D:\data目录下有 2012-09-17 至 2012-09-23 一共7天的…
HDFS和HBase是Hadoop中两种主要的存储文件系统,两者适用的场景不同,HDFS适用于大文件存储,HBASE适用于大量小文件存储.本文主要讲解HDFS文件系统中客户端是如何从Hadoop集群中读取和写入数据的,也可以说是block策略. 正文 一写入数据 当没有配置机架信息时,所有的机器hadoop都默认在同一个默认的机架下,名为"/default-rack",这种情况下,任何一台 datanode机器,不管物理上是否属于同一个机架,都会被认为是在同一个机架下,此时,就很容易出…