用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报标注语料的预处理,利用CRF++工具包对模型进行训练以及测试 目录 明确我们的标注任务 语料和工具 数据预处理 1.数据说明 2.数据预处理 模型训练及测试 1.流程 2.标注集 3.特征模板 4.CRF++包的使用说明 总结与展望 正文 1.明确我们的标注任务 这篇文章主要是介绍用CRF模型去提取…
用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修改了特征模板,最终训练了11个小时,F1值为0.98.(这里面有错误,计算F1值不应该计算全体的,应该只计算带有标注实体的词,不然量这么大,肯定F1值就大.最终改了计算F1值的方法,F1值为0.8856) 具体内容请看我的简书 欢迎扫码关注…
摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练模型 用CRF++测试模型并计算F1值 展望 用CRF做命名实体识别基本就做导这里了,我们发现(字+词性+边界+特征词+常用词)这几个特征可以达到比较好的效果,F1值为0.9293.再加入特征效果就会下降了,而且训练时间也会加长.后面打算用神经网络来做命名实体识别,目前主流方法是BILSTM-CRF…
CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫(Markov)随机场.   较为简单的条件随机场是定义在线性链上的条件随机场,称为线性链条件随机场(linear chain conditional random field). 线性链条件随机场可以用于序列标注等问题,而本文需要解决的命名实体识别(NER)任务正好可通过序列标注方…
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
github地址:https://github.com/taishan1994/tensorflow-bilstm-crf 1.熟悉数据 msra数据集总共有三个文件: train.txt:部分数据 当/o 希望工程/o 救助/o 的/o 百万/o 儿童/o 成长/o 起来/o ,/o 科教/o 兴/o 国/o 蔚然成风/o 时/o ,/o 今天/o 有/o 收藏/o 价值/o 的/o 书/o 你/o 没/o 买/o ,/o 明日/o 就/o 叫/o 你/o 悔不当初/o !/o 藏书/o 本来…
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练NER模型,识别人名.地名和组织机构名.尝试了两种模型:一种是手工定义特征模板后再用CRF++开源包训练CRF模型:另一种是最近两年学术界比较流行的 BiLSTM-CRF 模型. 小白一枚,简单介绍一下模型和实验结果,BiLSTM-CRF 模型的数据和代码在GitHub上. 命名实体识别(Named…
文章目录基本介绍BertForTokenClassificationpytorch-crf实验项目参考基本介绍命名实体识别:命名实体识别任务是NLP中的一个基础任务.主要是从一句话中识别出命名实体.比如姚明在NBA打球 从这句话中应该可以识别出姚明(人), NBA(组织)这样两个实体.常见的方法是对字或者词打上标签.B-type, I-type, O, 其中B-type表示组成该类型实体的第一个字或词.I-type表示组成该类型实体的中间或最后字或词,O表示该字或词不组成命名实体,当然有的地方也…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇.比如人名.地名.组织机构名.股票基金.医学术语等,称为命名实体.具有以下共性: 数量无穷.比如宇宙中的恒星命名.新生儿的命名不断出现新组合. 构词灵活.比如中国工商银行,既可以称为工商银行,也可以简称工行. 类别模糊.有一些地名本身就是机构名,比如"国家博物馆" 命名实体识别 识别出句子中命名实体的…
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成    使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…