20150913K-means聚类】的更多相关文章

关注我们的公众号哦!获取更多精彩哦! 1.问题导入 假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置.事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的"某个地址",然后步行到每个组内的地址.那么,如何确定这些组,如何确定这些组的"某个地址"?答案就是聚类.而本文所提供的k-means聚类分析方法就可以用于解决这类问题. 2. k均值…
这里的程序稍微有点变形.k_means方法返回K-means聚类的若干中心点.代码: import java.util.ArrayList; import java.util.Collections; public class Prophet_kmeans { private static final int MAXK = 100; private static int n = 0; private static int K = 0; private static ArrayList<Doubl…
BoW模型最初应用于文本处理领域,用来对文档进行分类和识别.BoW 模型因为其简单有效的优点而得到了广泛的应用.其基本原理可以用以下例子来给予描述.给定两句简单的文档: 文档 1:“我喜欢跳舞,小明也喜欢.” 文档 2:“我也喜欢唱歌.” 基于以上这两个文档,便可以构造一个由文档中的关键词组成的词典: 词典={1:“我”,2:“喜欢”,3:“跳舞”,4:“小明”,5:“也”,6:“唱歌”} 这个词典一共包含6个不同的词语,利用词典的索引号,上面两个文档每一个都可以用一个6维向量表示(用整数数字0…
R 语言实战(第二版) part 4 高级方法 -------------第13章 广义线性模型------------------ #前面分析了线性模型中的回归和方差分析,前提都是假设因变量服从正态分布 #广义线性模型对非正态因变量的分析进行扩展:如类别型变量.计数型变量(非负有限值) #glm函数,对于类别型因变量用logistic回归,计数型因变量用泊松回归 #模型参数估计的推导依据的是最大似然估计(最大可能性估计),而非最小二乘法 #1.logistic回归 library(AER) d…
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63…
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?     那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为k个聚类,以便使得所获得的聚类满足: 同一聚类中的对象相似度较高:而不同聚类中的对象相似度较小. k - means的算法原理: (文/qinm08(简书作者) 原文链接:http://www.jianshu.com/p/32e895a940a2) 使用K-Means算法进行聚类,过程非常直观:(a…
http://www.cnblogs.com/LBSer/p/4605904.html Kmeans算法是一种非监督聚类算法,由于原理简单而在业界被广泛使用,一般在实践中遇到聚类问题往往会优先使用Kmeans尝试一把看看结果.本人在工作中对Kmeans有过多次实践,进行过用户行为聚类(MapReduce版本).图像聚类(MPI版本)等.然而在实践中发现初始点选择与聚类结果密切相关,如果初始点选取不当,聚类结果将很差.为解决这一问题,本博文尝试将模拟退火这一启发式算法与Kmeans聚类相结合,实践…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…