MapReduce( map的使用)】的更多相关文章

a)   Update the property in relevant mapred-site.xml(from where client load the config). b) Import the mapred-site.xml configuration file in the job startup command line using "-conf mapred-site.xml" For example: yarn jar hadoop-example.jar slee…
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs.block.size)为128m时,如果输入文件为128m,会被划分为1个split:当块为256m,会被划分为2个split. 2) 文件的个数.FileInputFormat按照文件分割split,并且只会分割大文件,即那些大小超过HDFS块的大小的文件.如果HDFS中dfs.block.siz…
JobConf.setNumMapTasks(n)是有意义的,结合block size会具体影响到map任务的个数,详见FileInputFormat.getSplits源码.假设没有设置mapred.min.split.size,缺省为1的情况下,针对每个文件会按照min (totalsize[所有文件总大小]/mapnum[jobconf设置的mapnum], blocksize)为大小来拆分,并不是说文件小于block size就不去拆分. 2.http://hadoop.hadoopor…
我们的输入文件 hello0, 内容如下: xiaowang 28 shanghai@_@zhangsan 38 beijing@_@someone 100 unknown 逻辑上有3条记录, 它们以@_@分隔. 我们看看数据是如何被map读取的... 1. 默认配置 /* New API */ //conf.set("textinputformat.record.delimiter", "@_@"); /* job.setInputFormatClass(Form…
转自:http://www.open-open.com/lib/view/open1453097241308.html 在MapReduce中,一个YARN  应用被称作一个job, MapReduce 框架提供的应用,master的一个实现被称作MRAppMaster MapReduce Job的时间线 MapReduce Job  运行的时间线: Map Phase:若干 Map Tasks 被执行 Reduce Phase: 若干Reduce Tasks 被执行 reduce可能会在map…
  对于Hadoop来说,是通过在DataNode中启动Map/Reduce java进程的方式来实现分布式计算处理的,那么就从源码层简要分析一下hadoop中启动Map/Reduce任务的过程.   首先,对于Map/Reduce端启动的任务,都是通过一些参数来控制java opts的,mapreduce.map.java.opts,mapreduce.reduce.java.opts,这些参数都在MRJobConfig类中,拿map.java.opts举例来说,org.apache.hado…
我们知道,MapReduce有三层调度模型,即Job——>Task——>TaskAttempt,并且: 1.通常一个Job存在多个Task,这些Task总共有Map Task和Redcue Task两种大的类型(为简化描述,Map-Only作业.JobSetup Task等复杂的情况这里不做考虑): 2.每个Task可以尝试运行1-n此,而且通常很多情况下都是1次,只有当开启了推测执行原理且存在拖后腿Task,或者Task之前执行失败时,Task才执行多次. 而TaskImpl中存在一个成员变…
接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mapper.Context.write()将map函数的输出溢写到内存中的环形缓冲区 (MapTask.MapOutputBuffer).缓冲区的大小是固定的,通过mapreduce.task.io.sort.mb (default: 100MB)指定. 任何时候当这个缓冲区将要充满的时候(mapreduc…
mapReduce 随着"大数据"概念而流行. 其实mapReduce的概念非常简单, 从功能上说,相当于RDBMS的 group 操作 mapReduce的真正强项在哪? 答:在于分布式,当数据非常大时,像google,有N多数据中心, 数据都不在地球的一端,用group力所不及. group既然不支持分布式,单台服务器的运算能力必然是有限的. 而mapRecuce支持分布式,支持大量的服务器同时工作, 用蛮力来统计. mapRecuce的工作过程: ① map: 这个称为映射函数,…
上一节以WordCount分析了MapReduce的基本执行流程,但并没有从框架上进行分析,这一部分工作在后续慢慢补充.这一节,先剖析一下作业提交过程. 在分析之前,我们先进行一下粗略的思考,如果要我们自己设计分布式计算,应该怎么设计呢?假定有100个任务要并发执行,每个任务分别针对一块数据,这些数据本身是分布在多个机器上的,主要面临哪些问题? 1.数据如何分布是首先面临的问题,可能也是影响分布式计算性能的最关键问题.一个超大文件,按照哪种方式切割开来,分别丢到不同的机器?Hadoop的答案是按…