HRNet网络结构】的更多相关文章

hrnet相关的两篇文章 CVPR2019   Deep High-Resolution Representation Learning for Human Pose Estimation High-Resolution Representations for Labeling Pixels and Regions (https://arxiv.org/pdf/1904.04514.pdf)               提出了一种新的架构,即高分辨率网络(HRNet),它能够在整个过程中维护高分…
最近正在阅读CVPR2019的论文Deep High-Resolution Representation Learning for Human Pose Estimation. 无奈看论文中的Network instantiation部分太过简略,在网上也没有搜索到一个非常清晰的图示. 我阅读这篇论文的时候,觉得自己如果无法完全清晰地知晓网络结构,就始终有一种浮于表面的感觉,相当于只是学习了一个本文的idea.因此我先去学习了ResNet,再一边学pytorch一边阅读了https://gith…
从DeepNet到HRNet,这有一份深度学习"人体姿势估计"全指南 几十年来,人体姿态估计(Human Pose estimation)在计算机视觉界备受关注.它是理解图像和视频中人物行为的关键一步. 在近年深度学习兴起后,人体姿态估计领域也发生了翻天覆地的变化. 今天,文摘菌就从深度学习+二维人体姿态估计的开山之作DeepPose开始讲起,为大家盘点近几年这一领域的最重要的论文. 什么是人体姿势估计? 人体姿态估计(Human Pose Estimation,以下简称为HPE)被定…
多视觉任务的全能: HRNet HRNet是微软亚洲研究院的王井东老师领导的团队完成的,打通图像分类.图像分割.目标检测.人脸对齐.姿态识别.风格迁移.Image Inpainting.超分.optical flow.Depth estimation.边缘检测等网络结构. 王老师在ValseWebinar<物体和关键点检测>中亲自讲解了HRNet,讲解地非常透彻.以下文章主要参考了王老师在演讲中的解读,配合论文+代码部分,来为各位读者介绍这个全能的Backbone-HRNet. 1. 引入 网…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\theta+\theta_{1}x_{1}+\theta_{2}x_{2}+....\theta_{n}x_{n}$ 线性回归的求解法通常为两种: ①解优化多元一次方程(矩阵)的传统方法,在数值分析里通常被称作”最小二乘法",公式$\theta=(X^{T}X)^{-1}X^{T}Y$ ②迭代法:有一阶导数…
  去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算法原理基本不懂.近日再次学习 RBM,觉得有必要将其整理成笔记,算是对那个代码的一个补充.  目录链接 (一)预备知识 (二)网络结构 (三)能量函数和概率分布 (四)对数似然函数 (五)梯度计算公式 (六)对比散度算法 (七)RBM 训练算法 (八)RBM 的评估 作者: peghoty 出处: http:…
原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的路由器网络结构:这个路由器内部交换机有6个口,其中1个WAN口.4个LAN口.Port5默认连接内部网卡eth0,还有连接Wifi的无线网卡接eth2,eth3保留. 最让我惊奇的是OpenWrt网络的灵活性,它主要靠VLAN和(Bridging)网桥等实现. VLAN 一般路由器为节约成本只有一张…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果.最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下总结,和大家一起分享学习. 1 引言 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出…