导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加入LSTM/RNN模型中的attention机制是如何克服传统编码器-解码器结构存在的问题的. 通过阅读这篇博文,你将会学习到: 传…