附录3:RMA算法原理】的更多相关文章

RMA算法分三步: 一.背景校正(没精力写了) 二.归一化(没精力写了) 三.计算表达值 假设有5张芯片,这些芯片的某个探针组包含5个探针,它们的表达值如下: GeneChip 4 8 6 9 7 3 1 2 4 5 Probe   6 10 7 12 9 4 5 8 9 6 7 11 8 12 10 (1)获取每一行的中位数: Rdelta 4 8 6 9 7 7 3 1 2 4 5 3 6 10 7   12   9 9 4 5 8 9 6   6 7 11 8 12 10 10 (2)每一…
1.点评 对于IM系统来说,如何做到IM聊天消息离线差异拉取(差异拉取是为了节省流量).消息多端同步.消息顺序保证等,是典型的IM技术难点. 就像即时通讯网整理的以下IM开发干货系列一样: <IM消息送达保证机制实现(一):保证在线实时消息的可靠投递> <IM消息送达保证机制实现(二):保证离线消息的可靠投递> <如何保证IM实时消息的“时序性”与“一致性”?> <IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?> <IM群聊消息如此复杂,如何保…
Svm(support Vector Mac)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性核非线性两大类.其主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本本集中所有数据到这个超平面的距离最短. 一.基于最大间隔分隔数据 1.1支持向量与超平面 在了解svm算法之前,我们首先需要了解一下线性分类器这个概念.比如给定一系列的数据样本,每个样本都有对应的一个标签.为了使得描述更加直观,我们采用二维平面进行解释,高维…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA算法原理(二) RAS算法原理…
LruCache算法原理及实现 LruCache算法原理 LRU为Least Recently Used的缩写,意思也就是近期最少使用算法.LruCache将LinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端.调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除. 基于LinkedHashMap的LRUCache的实现,关键是重写LinkedH…
本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内容分为三个部分. 第一部分主要从数据结构及算法理论层面讨论MySQL数…
    本节介绍OpenGL中绘制直线.圆.椭圆,多边形的算法原理.     (1)绘制任意方向(任意斜率)的直线: 1)中点画线法: 中点画线法的算法原理不做介绍,但这里用到最基本的画0<=k<=1的中点画线法实现任意斜率k直线的绘制. )当A点x坐标值大于B点坐标值时,即A点在B点的右侧时,交换A.B点的坐标.保证A点在B的左侧. )考虑特殊情况,当直线AB的斜率不存在时,做近似处理,设置斜率为-(y0-y1)*,即近似无穷大. )当斜率m满足0<=m<=1时,按书本上的中点画…
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在SVM的前三篇里,我们优化的目标函数最终都是一个关于$\alpha$向量的函数.而怎么极小化这个函数,求出对应的$\alpha$向量,进而求出分离超平面我们没有讲.本篇就对优化这个关于$\alpha$向量的函数的SMO算法做一个总结. 1. 回顾SVM优化目标函数 我们首先回顾下我们…
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几个概念. 分布式 分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务. 以一个航班订票系统为例,这个航班订票系统有航班预定.网上值机.旅客信息管理.订单管理.运价计算等服务模块.现在要以集中式(集群,cluster)和分布式的方式进行部署,…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting算法族的一部分.Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴.Boosting方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好.通俗地说,就是"三个臭皮匠顶个…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3.  1.失焦检测. 衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰.1 1.4. 利用边缘检测 ,模糊图片边缘会较少2 1.5. 通过dct比较.Dct分离出的低频信号比较2 1.6. 参考资料2 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的 1.2. Remark:   1)肉眼可…
1. 引言 LZ77算法是采用字典做数据压缩的算法,由以色列的两位大神Jacob Ziv与Abraham Lempel在1977年发表的论文<A Universal Algorithm for Sequential Data Compression>中提出. 基于统计的数据压缩编码,比如Huffman编码,需要得到先验知识--信源的字符频率,然后进行压缩.但是在大多数情况下,这种先验知识是很难预先获得.因此,设计一种更为通用的数据压缩编码显得尤为重要.LZ77数据压缩算法应运而生,其核心思想:…
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用…
很多游戏特别是rts,rpg类游戏,都需要用到寻路.寻路算法有深度优先搜索(DFS),广度优先搜索(BFS),A星算法等,而A星算法是一种具备启发性策略的算法,效率是几种算法中最高的,因此也成为游戏中最常用的寻路算法. 直入正题: 在游戏设计中,地图可以划分为若干大小相同的方块区域(方格),这些方格就是寻路的基本单元. 在确定了寻路的开始点,结束点的情况下,假定每个方块都有一个F值,该值代表了在当前路线下选择走该方块的代价.而A星寻路的思路很简单:从开始点,每走一步都选择代价最小的格子走,直到达…
本文转载自http://blog.jobbole.com/24006/ 摘要本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论.文章主要内容分为三个部分.第一部分主要从数据结构及算法理论层面讨论M…
参考资料: Kd Tree算法原理 Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据.在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle).…
SSH原理与运用(一)和(二):远程登录  RSA算法原理(一)和(二) http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html http://www.ruanyifeng.com/blog/2011/12/ssh_port_forwarding.html RSA算法原理(一) http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html RSA算法原理(二)…
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类: (3) 更新中心点为每类的均值: (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 为什么迭代后误差逐渐减小: SSE=  对于 而言,求导…
原文地址:http://blog.csdn.net/likezhaobin/article/details/6892176 原文地址:http://blog.csdn.net/likezhaobin/article/details/6892629 图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要…
RSA算法原理(二)   作者: 阮一峰 日期: 2013年7月 4日 上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解RSA算法.假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢? 第一步,随机选择两个不相等的质数p和q. 爱丽丝选择了61和53.(实际应用中,这两个质数越大,就越难破解.) 第二步,计算p和q的乘积n. 爱丽丝就把61和53相乘. n = 61×53 = 3233 n…
kmp算法原理:求出P0···Pi的最大相同前后缀长度k: 字符串匹配是计算机的基本任务之一.举例,字符串"BBC ABCDAB ABCDABCDABDE",里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一. KMP算法搜索如下: 1.首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的…
wand(weak and)算法基本思路 一般搜索的query比较短,但如果query比较长,如是一段文本,需要搜索相似的文本,这时候一般就需要wand算法,该算法在广告系统中有比较成熟的应 该,主要是adsense场景,需要搜索一个页面内容的相似广告. Wand方法简单来说,一般我们在计算文本相关性的时候,会通过倒排索引的方式进行查询,通过倒排索引已经要比全量遍历节约大量时间,但是有时候仍 然很慢. 原因是很多时候我们其实只是想要top n个结果,一些结果明显较差的也进行了复杂的相关性计算,而…
AC-BM算法原理与代码实现(模式匹配) AC-BM算法将待匹配的字符串集合转换为一个类似于Aho-Corasick算法的树状有限状态自动机,但构建时不是基于字符串的后缀而是前缀.匹配 时,采取自后向前的方法,并借用BM算法的坏字符跳转(Bad Character Shift)和好前缀跳转(Good Prefix Shift)技术.   坏字符跳转即当字符串树中的字符与被匹配内容x失配时,将字符串树跳转到下一个x的出现位置,如果x的字符串树不存在, 则将字符串树向左移动字符串树的最小字符串长度.…
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般能够看作是一个阶跃,既从一个灰度值在非常小的缓冲区域内急剧变化到还有一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同一时候也是图象切割所依赖的重要特征,边缘检測主要是图象的灰度变化的度量.检測和定位,自从1959提出边缘检測以来,经过五十多年的发展,已有很多中不同的边缘检測方法.依据作者的理解和实践,本文对边缘检測的原理进行了描写叙述,在此基础上着重对…
在提出基于滑动窗口的LZ77算法后,两位大神Jacob Ziv与Abraham Lempel [1]于1978年又提出了LZ78算法:与LZ77算法不同的是LZ78算法使用树状词典维护历史字符串. [数据压缩]LZ77算法原理及实现 1. 原理 从个人层面,LZ78算法比LZ77算法更容易被理解. 压缩 LZ78算法的压缩过程非常简单.在压缩时维护一个动态词典Dictionary,其包括了历史字符串的index与内容:压缩情况分为三种: 若当前字符c未出现在词典中,则编码为(0, c): 若当前…
1 指数格伦布熵编码算法原理 1.1 无符号整数k阶指数格伦布算法编码过程: 1) 将数字以二进制形式写出,去掉最低的k个比特位,之后加1 2) 计算留下的比特数,将此数减一,即是需要增加的前导零个数 3) 将第一步中去掉的最低k个比特位补回比特串尾部 例子(1阶指数格伦布算法编码整数9): 第1步以符号a0表示整数9: a0 = 9; 第2步将整数9转化为二进制格式表示并以符号a1表示:  a1 = 1001; 第3步去掉最低1个比特位并保存到符号r0中,剩余部分记作a2:r0 = 1; a2…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…