原创博文,转载请注明出处!本文代码的github地址    博客索引地址 1.数据集 数据集使用sklearn自带的手写数字识别数据集mnist,通过函数datasets导入.mnist共1797个样本,8*8个特征,标签为0~9十个数字. ### 载入数据 from sklearn import datasets # 载入数据集 digits = datasets.load_digits() # 载入mnist数据集 print(digits.data.shape) # 打印输入空间维度 pr…
# 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中间过程(默认) silent=1时,输出中间过程 nthread nthread=-1时,使用全部CPU进行并行运算(默认) nthread=1时,使用1个CPU进行运算. scale_pos_weight 正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好.例如,当正负样本比例为1:10时,scale_pos_w…
直接上代码,简单 # -*- coding: utf-8 -*- """ ############################################################################### # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 代码:http://github.com/wanglei5205 # 博客:http://cnblogs.com/wanglei5205 # 目的:学习xgb…
参数解释,后续补上. # -*- coding: utf-8 -*- """ ############################################################################### # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 代码:http://github.com/wanglei5205 # 博客:http://cnblogs.com/wanglei5205 # 目的:学习x…
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过合并多个模型来提升机器学习性能,这种方法相较于当个单个模型通常能够获得更好的预测结果.这也是集成学习在众多高水平的比赛如奈飞比赛,KDD和Kaggle,被首先推荐使用的原因. 一般来说集成学习可以分为三大类: 用于减少方差的bagging 用于减少偏差的boosting 用于提升预测结果的stacking 集…
目录 1.回顾: 1.1 有监督学习中的相关概念 1.2  回归树概念 1.3 树的优点 2.怎么训练模型: 2.1 案例引入 2.2 XGBoost目标函数求解 3.XGBoost中正则项的显式表达 4.如何生长一棵新的树? 5.xgboost相比原始GBDT的优化: 6.代码参数: 1.回顾: 我们先回顾下有监督学习中的一些核心概念: 1.1 有监督学习中的相关概念 我们模型关注的就是如何在给定xi的情况下获得ŷi.在线性模型里面,我们认为 i是x的横坐标,j是x的列坐标,本质上linear…
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5). 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升. 集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影. 2 集成学习概述 常见的集成学习思想有∶ Bag…
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好).集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来. 集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging).偏差(boosting)或改进预测(sta…
集成学习是通过构建并结合多个学习器来完成学习任务.其工作流程为: 1)先产生一组“个体学习器”.在分类问题中,个体学习器也称为基类分类器 2)再使用某种策略将它们结合起来. 通常使用一种或者多种已有的学习算法从训练数据中产生个体学习器.通常选取个体学习器的准则是: 1)个体学习器要有一定的准确性,预测能力不能太差 2)个体学习器之间要有多样性,即学习器之间要有差异 根据个体学习器的生成方式,目前的集成学习方法大概可以分为以下两类: 1)Boosting算法:在Boosting算法中,个体学习器之…
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分…