code3728 联合权值】的更多相关文章

一开始暴搜,超时3个点... 后来看了题解: 首先,两个点的距离为2当且仅当它们都与一个点直接相连 反过来说,一个点所有的出边的终点都是互相距离2的(最大值可以依靠这个方法,前向星处理的时候将每个点的最大出点和次大出点存起来,最后过一遍比较乘积) 那么,所有点对的权值和就是每一个点所产生的点对权值和的总和 但此时,如若要对每一个点的出点进行两两配对,每一个点需要O(e^2)(e为该点出度) 只要有一个点有太多的出边就会TLE,此时我们我可以利用乘法分配律 w[i]*w[j1]+w[i]*w[j2…
问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它们的距离为2,则它们之间会产生Wu×Wv的联合权值. 请问图G上所有可 产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入描述 第一行包含1个整数n.接下来n-1行,每行包含2个用空格隔开的正整数u.v,表示编 号为u和编号为v的点之间有边相连. 最后1行,包含n个正整数…
描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离.对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生WuWu×WvWv的联合权值. 请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 格式 输入格式 第一行包含 1 个整数 n. 接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u…
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu ×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式: 输入文件名为link .in. 第一行包含1 个整数n . 接下来n - 1 行,…
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu ×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式: 输入文件名为link .in. 第一行包含1 个整数n . 接下来n - 1 行,…
我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include<cstdio> #include<cstring> using namespace std; ,N=,M=; int head[M],next[M],to[M],du[N],a[N],size; int w[N],n,sum,ss,m1,m2,ans1,ans2; void uni(int…
联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离.对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生WuWu×WvWv的联合权值. 请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 格式 输入格式 第一行包含 1 个整数 n. 接下来 n-1 行,每行包含 2 个用空格隔开的…
2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对于图G上的点对(u, v),若它们的距离为2,则它们之间会产生Wu×Wv的联合权值. 请问图G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? [输入] 输入文件名为link.in. 第一行包含1个整数n. 接下来n-1行,每行包含2个用空格隔开…
还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离.对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生Wu * Wv 的联合权值.请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入 第一行包含 1 个整数 n.接下来 n-1 行,每行包含 2 个用空格隔开的正整数 …
https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 对于点X(X的儿子数≥2),它的每一个儿子i与其他的儿子对权值和的贡献为Wi*(sum-Wi),则这个点所有儿子之间对权值和的贡献为:∑Wi*(sum-Wi),其中sum为点X所有儿子的权值之和.(貌似还有更高效的算法?) 对于点X (X的儿子数≥2),它的所有儿子之间可以产生的联合权值的最大值,…