pandas时间序列常用操作】的更多相关文章

目录 一.时间序列是什么 二.时间序列的选取 三.时间序列的生成 四.时间序列的偏移量 五.时间前移或后移 五.时区处理 六.时期及算术运算 七.频率转换 一.时间序列是什么 时间序列在多个时间点观察或测量到的任何事物,很多都是固定频率出现 的,比如每15秒.每5分钟.每月. padnas提供了一组标准的时间序列处理工具和数据算法,基本的时间序列类型是以时间戳为索引的Series. 当创建一个带有DatetimeIndex的Series时,pandas就会知道对象是一个时间序列,用Numpy的d…
1. DataFrame 处理缺失值  dropna() df2.dropna(axis=0, how='any', subset=[u'ToC'], inplace=True) 把在ToC列有缺失值的行去掉 补充:还可以用df.fillna()来把缺失值替换为某个特殊标记 df = df.fillna("missing") # 用字符串替代 df = df.fillna(df.mean()) # 用均值或者其它描述性统计值替代 2. 根据某维度计算重复的行   duplicated(…
# 时间序列和常用操作 import pandas as pd # 每隔五天--5D pd.date_range(start = '',end = '',freq = '5D') ''' DatetimeIndex(['2020-01-01', '2020-01-06', '2020-01-11', '2020-01-16', '2020-01-21', '2020-01-26', '2020-01-31'], dtype='datetime64[ns]', freq='5D') ''' # 每…
向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() on each element, returning a boolean. extract() Call re.match() on each element, returning matched groups as strings. findall() Call re.findall() on e…
pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的数据类型 pd.read_excel(路径,sheet_name='业务员',usecols=['条形码','业务员自定义'],dtype={'外部平台单号':str}) 3.去重(删除重复项) excelData.drop_duplicates(keep='first') #去重保留第一个 4.表…
目录 Pandas 时间序列处理 1 Python 的日期和时间处理 1.1 常用模块 1.2 字符串和 datetime 转换 2 Pandas 的时间处理及操作 2.1 创建与基础操作 2.2 时间数据重采样 2.3 滑动窗口 Pandas 时间序列处理 1 Python 的日期和时间处理 1.1 常用模块 datetime time calendar datetime,以毫秒形式存储日期和时间 datime.timedelta,表示两个 datetime 对象的时间差 datetime 模…
介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍所有 Pandas 在时间序列数据上的处理方法. 知识点 创建时间对象 时间索引对象 时间算术方法 创建时间对象 在 Pandas 中关于时间序列的常见对象有 6 种,分别是 Timestamp(时间戳).DatetimeIndex(时间戳索引).Period(时间段).PeriodIndex(时间…
Pandas时间序列 pandas 提供了一组标准的时间序列处理工具和数据算法 数据类型及操作 Python 标准库的 datetime datetime 模块中的 datetime. time. calendar 等类都可以用来存储时间类型以及进行一些转换和运算操作. from datetime import datetime now = datetime.now() now delta = datetime(2010,2,2)-datetime(2010,2,1) delta now + d…
Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd import numpy as np #创建一个Pandas序列 s = pd.Series([1, 3, 6, np.nan, 44, 1]) # print(s) # 0 1.0 # 1 3.0 # 2 6.0 # 3 NaN # 4 44.0 # 5 1.0 # dtype: float64…
一.Pandas的数据操作 0.DataFrame的数据结构 1.Series索引操作 (0)Series class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). #带轴标签的一维ndarray(包括时间序列). Labels need not be unique but must be a…