spark.streaming.kafka.maxRatePerPartition设定对目标topic每个partition每秒钟拉取的数据条数. 假设此项设为1,批次间隔为10s,目标topic只有一个partition,则一次拉取的数据量为1*10*1=10. 若有不对的地方,请指正.…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接收数据主要有两种办法,一种是基于Kafka high-level API实现的基于Receivers的接收方式,另一种是从Spark 1.3版本之后新增的无Receivers的方式.这两种方式的代码编写,性能表现都不相同.本文后续部分对这两种方式逐一进行分析. 一.基于Receiver的模式 这种模…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
KafkaStreaming.scala文件 import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.kafka.{KafkaManagerAdd, KafkaUtils} import org.json4s.Defau…
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序continuous application 首先,也是最重要的,在2.x中,提出了一个叫做continuous applications连续应用程序的概念. 如下图所示,数据从Kaf…
一.Receiver模式 1. receiver模式原理图 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也 可以修改.receiver task对接收过来的数据进行存储和备份,这个过程会有节点之间的数据传输.备份完成后去zookeeper中更新消费偏移量,然后向Driver中的 receiver tracker汇报数据的位置.最后Driv…
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.stream…
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现) 数据格式 {"user":"zhangsan","payment":8} {"user":"wangwu","payment":7}…