Storm使用总结】的更多相关文章

作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 本文主要翻译自Storm官方文档Guaranteeing message processing,但我觉得官方文档写的有些随意,啰嗦,所以做了一些修改,里面的配图自己重新画了,能够更加贴切的表达意思. 内容简介 Storm可以保证从Spout发出的每个消息都能被完全处理.Storm的可靠性机制是完全分布式的(distributed),可伸缩的(scalable),容错的…
2016-11-14  22:05:29 有哪些典型的Storm应用案例? 数据处理流:Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去.不像其它的流处理系统,Storm不需要中间队列. 连续计算:连续发送数据到客户端,使它们能够实时更新并显示结果,如网站指标. 分布式远程过程调用:由于storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式rpc框架来使用.频繁的CPU密集型操作并行化. push/pull Sockets 在系统底层,Stor…
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 内容简介 本文是Storm系列之一,介绍了Storm的起源,Storm作者的八卦,Storm的特点和Storm模型的基本原理,着重介绍了Storm中的基本概念(Spout, Bolt, Stream, Tuple等)和对应的编程接口,可以作为Storm的入门文档来阅读. 八卦 之前的技术文章都写的有点一板一眼,太正经了.今天在文章正式开始前,跟大家八卦一下Storm的…
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 注:本文主要内容翻译自understanding-the-parallelism-of-a-storm-topology 本篇文章介绍了Storm拓扑的并发模型.介绍了Worker进程,Executor(线程)和Task(任务)之间的关系,如何按照需要配置他们.本文基于Storm 0.8.1版本,最新发布版本已经到了0.9.5了. 对于不了解Storm的朋友,可以先去…
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop,本身不擅长实时的数据分析处理.两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念.本文中我就不具体阐述Storm集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的. Storm本身是Apache托管的开源的分布式实时计…
作者:Jack47 转载请保留作者和原文出处 欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 一个Storm拓扑,就是一个复杂的多阶段的流式计算.Storm中的组件(Component)就是对各个阶段的一个抽象,其中的Spout是生产者的角色,它负责源源不断地从Storm外部接收消息,扔给下游的组件处理,下游组件处理完成后,最终输出到外部的存储系统. 本文主要讲解消息在Storm内部的各个组件(Component)之间如何进行传递,本文适用于JStorm 2.…
作者:Jack47 转载请保留作者和原文出处 欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 本文是Storm系列之一,主要介绍Storm的架构设计,推荐读者在阅读Storm介绍(一)的基础之上,阅读这一篇.本文只是作者的读书笔记,偏重于浅层次的架构介绍,如果想真正理解内部设计时候的权衡,还需要更多的去阅读Storm源码. 理解Storm的架构,有助于帮助我们理解大型分布式系统设计中需要解决的问题,以及解决问题的思路,帮助我们更好的进行Storm性能调优化.…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…
概要:在使用storm分布式计算框架进行数据处理时,如何保证进入storm的消息的一定会被处理,且不会被重复处理.这个时候仅仅开启storm的ack机制并不能解决上述问题.那么该如何设计出一个好的方案来解决上述问题? 现有架构背景:本人所在项目组的实时系统负责为XXX的实时产生的交易记录进行处理,根据处理的结果向用户推送不同的信息.实时系统平时接入量每秒1000条,双十一的时候,最大几十万条. 原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6219878…
序:在开发storm项目时,提交项目jar包当把依赖的第三方jar包都打进去提交storm集群启动时报了发现多个同名的文件错误由此开始了一段对jar包的深刻理解之路. java.lang.RuntimeException: Found multiple defaults.yaml resources. You're probably bundling the Storm jars with your topology jar. [jar:file:/home/hadoop/app/storm/l…