数论剩余系——cf1089F】的更多相关文章

关于模和互质,很好的题目 /* n两个质因子 x,y有 ax+by=n-1 ax+by=n-1 ax+1+by=n y|ax+1 gcd(x,y)=1 ax%y,a取[1,y-1],就会有[1,y-1]个不同的值 其中 必定有y-1 所以y|ax+1 ax+1<=(y-1)x+1=xy-y+1<=n,所以必定存在a,b */ #include<bits/stdc++.h> using namespace std; #define ll long long ll n; ll prim…
题意 题目链接 求满足\(i^2 + j^2 \% M = 0\)的数对\((i, j)\)的个数,\(1 \leqslant i, j \leqslant 10^9, M \leqslant 1000\) Sol 发这篇博客的目的就是为了证明一下我到底有多菜. mdzz小学组水题我想了40min都没想出来.这要是出在NOIP 2019的话估计我又要做不出Day1T1了.. \(i^2 + j^2 \% M = i \% M * i \% M + j \% M * j \% M\) 枚举剩余系即…
前言:程不在长,能过则行.码不在多,无虫则灵.斯是信竞,惟吾爆零.线段维护快,树状跳的勤.数论剩余系,图论前向星.无数竞之推理,无物竞之劳形.大佬楼教主,超奆姚期智,神犇云:您太强了. 早上5:00就醒了,根本睡不着 5:30,在床上翻来覆去睡不着,只好起来洗了个澡 8:30开始比赛,状态不是很好,有点困 T1 简要题意:求\(l,r\)之间模 \(n\) 的最大数. 刚看到这道题,我没想那么多,直接上机就打,用了一个双重循环嵌套,打完再一仔细看题,才发现 这就是一道数学题 看了一眼数据范围 \…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
分析 kuangbin的blog已经讲的很好了,我做一点补充 1.当做x*y>z的比较时,如果x \(\ast\) y过大,可以写成x>z/y 2.分解质因数时选择用f[][0]保存质数,方便查错 3.写程序时分段写,防止变量名写错查很久 一道不错的题(对我来说) #include <bits/stdc++.h> using namespace std; #define ll long long #define F(i,a,b) for(int i=a;i<=b;++i) #…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
数论进阶-Preknowledge 参考资料:洛谷网校2018夏季省选基础班SX-3数论进阶课程及课件 一.整除与取整除法 1.1 定义 1.整除 \(\forall~x,y~\in~Z^+,\) 若 \(\exists~k~~,~~s.t.~y~=~kx\),则称 \(y\) 是 \(x\) 的倍数,\(x\) 整除 \(y\).记做 \(x~|~y\) 2.取整 \(\forall~x~\in~Q\),\(\lfloor x \rfloor\) 代表不大于 \(x\) 的最大整数,\(\lc…
总得来说,这是可怕的一天,极其可怕的一天(完) 一.数论 阴影啊! 首先,设ab为两个整数,则存在唯一的q和r,使得a=qb+r 若r=0,则b整除a,记作b|a. (1)同余 若a/m和b/m的余数相同,则称a于b对模m同余,记作a ≡ b (mod m) 剩余系:在模 m 的意义下,余数相同的数归为一个集合,那么所有整数被分为 m个不同的集合,模 m 的余数分别为 0,1,2,3,...,m − 1,这些集合被称为模 m 剩余类(同余类).每个同余类中的任意两个整数都是模 m 同余的.__b…
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据,看看有没有结论. 2 3 4 5 6 7 8 9 10 11 12 (人数) 1 2 2 3 3 3 4 4 4 4 4 (比赛数) 发现比赛数的增长成斐波那契.维护一个前缀和即可. #include <bits/stdc++.h> #define ll long long using names…
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation…