Hadoop yarn任务调度策略介绍】的更多相关文章

理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资源的就是Scheduler.其实调度本身就是一个难题,很难找到一个完美的策略可以解决所有的应用场景.为此,Yarn提供了多种调度器和可配置的策略供我们选择. 一.调度器的选择 在Yarn中有三种调度器可以选择:FIFO Scheduler ,Capacity Scheduler,FairS ched…
二.Capacity Scheduler(容器调度器)的配置 2.1 容器调度介绍 Capacity 调度器允许多个组织共享整个集群,每个组织可以获得集群的一部分计算能力.通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了.除此之外,队列内部又可以垂直划分,这样一个组织内部的多个成员就可以共享这个队列资源了,在一个队列内部,资源的调度是采用的是先进先出(FIFO)策略. 通过上面那幅图,我们已经知道一个job可能使用不了…
本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hadoop_yarn_resource_scheduler 搜了一些博客,发现写得最清楚的还是<Hadoop权威指南>,以下内容主要来自<Hadoop The Definitive Guide> 4th Edition 2015.3. Hadoop YARN Scheduler 三个调度器 YARN提供了CapacityScheduler, Fai…
简介: 本文介绍了 Hadoop 自 0.23.0 版本后新的 map-reduce 框架(Yarn) 原理,优势,运作机制和配置方法等:着重介绍新的 yarn 框架相对于原框架的差异及改进:并通过 Demo 示例详细描述了在新的 yarn 框架下搭建和开发 hadoop 程序的方法. 读者通过本文中新旧 hadoop map-reduce 框架的对比,更能深刻理解新的 yarn 框架的技术原理和设计思想,文中的 Demo 代码经过微小修改即可用于用户基于 hadoop 新框架的实际生产环境.…
Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终,2.0 版提供了多项革命性功能,其中包括 Yet Another Resource Negotiator (YARN).HDFS Federation 和一个高度可用的 NameNode,它使得 Hadoop 集群更加高效.强大和可靠.在本文中,将对 YARN 与 Hadoop 中的分布式处理层的…
一 概述       Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统.可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率.资源统一管理和数据共享等方面带来了巨大优点.                                                                      YARN最初是为了修复MapReduce实现…
https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章对性能优化的思路,如果评测性能,找到性能瓶颈,优化,优化效果评估,上线部署给出了很好的教科书式的案例,值得一看!! 背景 YARN作为Hadoop的资源管理系统,负责Hadoop集群上计算资源的管理和作业调度. 美团的YARN以社区2.7.1版本为基础构建分支.目前在YARN上支撑离线业务.实时业务…
YARN基本框架介绍 转载请注明出处:http://www.cnblogs.com/BYRans/ 在之前的博客<YARN与MRv1的对比>中介绍了YARN对Hadoop 1.0的完善.本文将重点介绍下YARN各个模块的作用与YARN运行流程. YARN模块介绍 概述 YARN是一个资源管理.任务调度的框架,主要包含三大模块:ResourceManager(RM).NodeManager(NM).ApplicationMaster(AM).其中,ResourceManager负责所有资源的监控…
0 YARN中实体 资源管理者(resource manager, RM) 长时间运行的守护进程,负责管理集群上资源的使用 节点管理者(node manager, NM) 长时间运行的守护进程,在集群的所有节点上运行,负责监视容器 容器(container) 在受限的资源集合(内存.CPU等)下执行应用相关的进程 1 YARN应用 1.1 运行 (1) 客户端联系RM,请求运行应用master(application master, AM)进程. (2) RM定位可用NM,并在NM上启动容器并在…
老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系 在这篇文章中得到启发:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/ 调度和隔离 Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存…
注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目前支持两种类型的资源隔离:CPU和内存,对于这两种类型的资源,Yarn使用了不同的资源隔离方案.   对于CPU而言,它是一种“弹性”资源,使用量大小不会直接影响到应用程序的存亡,因此CPU的资源隔离方案采用了Linux Kernel提供的轻量级资源隔离技术Cgroup:对于内存而言,它是一种“限制…
Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演示了一个 Hadoop 集群的高级组件. 图 1. Hadoop 集群架构的简单演示 一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统.MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模式,…
1. 介绍 YARN(Yet Another Resource Negotiator)是一个通用的资源管理平台,可为各类计算框架提供资源的管理和调度. 之前有提到过,Yarn主要是为了减轻Hadoop1中JobTracker的负担,对其进行了解耦.现在通常都会使用Hadoop Yarn,因为其稳定性更加优秀,YARN是对Mapreduce V1重构得到的,有时候也称为MapReduce V2. 2. YARN体系架构 首先,整个Hadoop Yarn和Hadoop1一样,也是建立在hdfs分布式…
在说Hadoop Yarn的原理之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker等工作.这自然就会产生一个问题,那就是JobTracker负载太多,有点"忙不过来".于是Hadoop在1.0到2.0的升级过程中,便将JobTracker的资源调度工作独立了出来,而这一改动,直接让Hadoop成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是Ha…
在说Hadoop Yarn之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker等工作.这自然就会产生一个问题,那就是JobTracker负载太多,有点"忙不过来".于是Hadoop在1.0到2.0的升级过程中,便将JobTracker的资源调度工作独立了出来,而这一改动,直接让Hadoop成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是Hadoo…
Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演示了一个 Hadoop 集群的高级组件.   图 1. Hadoop 集群架构的简单演示 一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统.MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模…
1.概述 之前在<Hadoop2源码分析-RPC探索实战>一文当中介绍了Hadoop的RPC机制,今天给大家分享关于YARN的RPC的机制.下面是今天的分享目录: YARN的RPC介绍 YARN的RPC示例 截图预览 下面开始今天的内容分享. 2.YARN的RPC介绍 我们知道在Hadoop的RPC当中,其主要由RPC,Client及Server这三个大类组成,分别实现对外提供编程接口.客户端实现及服务端实现.如下图所示: 图中是Hadoop的RPC的一个类的关系图,大家可以到<Hado…
从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache Hadoop由下面四个子工程组成: Hadoop Comon:核心库,为其他部分服务 Hadoop HDFS:分布式存储系统 Hadoop MapReduce:MapReduce模型的开源实现 Hadoop YARN:新一代Hadoop数据处理框架 概括来说,Hadoop YARN的目的是使得Hado…
背景 本文整理一些Hadoop YARN的相关内容. 简介 YARN(Yet Another Resource Negotiator)是Hadoop通用资源管理平台,为各类计算框架(离线MR.在线Storm.内存计算Spark等)提供统一的资源管理和调度. 它提供的功能有: 统一资源管理和调度: 集群中所有节点的资源(内存.CPU.磁盘.网络)抽象为Container.计算框架需要向YARN申请Container,YARN按策略对资源进行调度与Container分配. 资源隔离:YARN使用了轻…
一. Hadoop Yarn 是什么 在古老的 Hadoop1.0 中,MapReduce 的 JobTracker 负责了太多的工作,包括资源调度,管理众多的 TaskTracker 等工作.这自然是不合理的,于是 Hadoop 在 1.0 到 2.0 的升级过程中,便将 JobTracker 的资源调度工作独立了出来,而这一改动,直接让 Hadoop 成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是 Yarn . 在详细介绍 Yarn 之前,我们先简单聊聊 Yarn ,Y…
配置 hadoop+yarn+hbase+storm+kafka+spark+zookeeper 高可用集群,同时安装相关组建:JDK,MySQL,Hive,Flume 文章目录 环境介绍 节点介绍 集群介绍 软件版本介绍 前期准备 相关配置 新建用户 centos 添加sudo权限 更改用户名 主机名与IP映射 显示当前文件的绝对路径 ssh免密登录 关闭防火墙 两个批处理脚本 批分发指令脚本(xcall.sh) 批同步脚本(xsync.sh):类似于 scp 指令 集群环境搭建 安装JDK…
hadoop的目录结构介绍 解压缩hadoop 利用tar –zxvf把hadoop的jar包放到指定的目录下. tar -zxvf /home/software/aa.tar.gz -C /home/zjx/pf f:指定文件的名称 z:以gz结尾的文件就是用gzip压缩的结果.与gzip相对的就是gunzip,这个参数的作用就是用来调用gzip. X:为解开的意思 Z:详细报告处理文件的信息 目录结构总图 [root@localhost hadoop-2.6.0]# ll total 52…
apache  hadoop三种架构介绍(standAlone,伪分布,分布式环境介绍以及安装) hadoop 文档 http://hadoop.apache.org/docs/ 1.StandAlone环境搭建 运行服务 服务器IP NameNode 192.168.221.100 SecondaryNameNode 192.168.221.100 DataNode 192.168.221.100 ResourceManager 192.168.221.100 NodeManager 192.…
注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) yarn.resourcemanager.address 参数解释:ResourceManager 对客户端暴露的地址.客户端通过该地址向RM提交应用程序,杀死应用程序等. 默认值:${yarn.resourcemanager.hostname}:8032 (2) yarn.resourcemana…
错误: 14/04/29 02:45:07 INFO mapreduce.Job: Job job_1398704073313_0021 failed with state FAILED due to: Application application_1398704073313_0021 failed 2 times due to Error launching appattempt_1398704073313_0021_000002. Got exception:     org.apache…
客户端编程库: 所在jar包: org.apache.hadoop.yarn.client.YarnClient 使用方法: 1 定义一个YarnClient实例: private YarnClient client: 2 构造一个Yarn客户端句柄并初始化 this.client = YarnClient.createYarnClient(); client.ini(conf)3 启动Yarn yarnClient.start()4 获取一个新的application id YarnClien…
1. 背景   “应用程序运行于Hadoop Yarn之上”的需求来源于微博运维数据平台中的调度系统,即调度系统中的任务需要运行于Hadoop Yarn之上.这里的应用程序可以简单理解为一个普通的进程(这里特指Java进程),调度系统中的任务执行实际也是一个进程的运行过程,这里我们不讨论为什么调度系统中的任务(进程)需要运行于Hadoop Yarn之上,仅仅讨论如何使得一个应用程序(进程)可以运行于Hadoop Yarn之上.   应用程序(进程)需要运行于Hadoop Yarn之上,有三种可选…
参照site:http://hadoop.apache.org/docs/r2.6.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml 我们在配置yarn的时候只有充分了解各参数的含义,才能避免隐患.这些参数均在yarn-site.xml中配置 以下涉及的简写: RM :ResourceManager AM :ApplicationMaster NM :NodeManager 参数 默认值 描述 yarn.resourcemanager.hostn…
转 http://blog.csdn.net/u012303571/article/details/46913471   查看 nodemanager 日志发下 如下信息   2015-07-16 15:28:58,643 WARN org.apache.hadoop.yarn.server.nodemanager.DirectoryCollection: Directory /opt/beh/data/yarn/nmlocal error, used space above threshold…
背景 yarn默认使用的是最简单的FIFO调度器,即一个default队列,所有用户共享,分配资源也是先到先得,没有优先级之分.有时一两个任务就把资源全占了,其他任务吃不到资源造成饥饿,显然这样的资源分配是不合理的(在当今社会主义之中,我们要共同富裕啊).yarn还有两种资源调度器,capacity schedule和fair schedule,本文主要研究下capacity schedule. 什么是capacity schedule Capacity Schedule调度器以队列为单位划分资…