这是一道写起来比较顺手的题目 没有各种奇怪的细节,基本就是Kruskal和倍增LCA的模板.. 题目大意:对于一个无向带权图,询问两点之间一条路,使得这条路上的最长边最小,输出最小最长边的的值 那么既然要使最长边最短,我们可以先构造一棵最小生成树 由于kruskal已经将边排了序了,所以对于这棵树,每条边都尽量最短了 然后我们再进行lca求出两点路径上的最长边,即为答案 #include<stdio.h> #include<string.h> #include<algorit…
最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 理解 Prim算法从单一顶点开始,其按照以下步骤逐步扩大树中所包含顶点的数目,直到遍及连通图的所有顶点. 输入:一个加权连通图,其中顶点集合为V,边集合为E: 初始化:Vn = {x},其中x为集合V中的任一节点(起始点),Enew = {}: 重复下列操作,直到Vn = V: 在集合E中选取权值最…
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点…
http://codeforces.com/gym/101889 I 先跑一遍最小生成树,把经过的边和答案记录下来 对于每个询问的边,显然如果处于MST中,答案不变 如果不在MST中,假设这条边连上了,那么就会和原本的MST形成环,删除这个环中权值最大的边就是答案 处理的时候,可以用LCA维护MST:给出边的两个节点u.v,那么u和v的LCA路径上的最大值边就是环中权值最大的边 代码: #include <iostream> #include <cstring> #include…
题意:给一张n个点m条边的连通图,每条边(ai,bi)有一个权值wi和费用ci, 表示这条边每降低1的权值需要ci的花费.现在一共有S费用可以用来降低某些边的权值 (可以降到负数),求图中的一棵权值和最小的生成树并输出方案 显然是找到一条边然后将这条边减到最小 先跑一边最小生成树,找到树上最小的一点,然后在枚举其他的边, 加上这条边会产生一个环,所以需要删除这个环上面权值最大的边 这个通过类似于LCA倍增的手法做到, #include <cstdio> #include <cstring…
在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优的问题,怎样修才是做好的,如下图:第一个是网全图,后三个图的修路方案都可以 1.树的定义:有n个顶点和n-1条边,没有回路的称为树 生成树的定义:生成树就是包含全部顶点,n-1(n为顶点数)条边都在图里就是生成树 最小:指的是这些边加起来的权重之和最小 2.判定条件:向生成树中任加一条边都一定构成回…
在某个遥远的国家里,有 n个城市.编号为 1,2,3,…,n.这个国家的政府修建了m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市T需要收取的过路费为所经过城市之间道路长度的最大值.如:A到B长度为 2,B到C 长度为3,那么开车从 A经过 B到C 需要上交的过路费为 3.    佳佳是个做生意的人,需要经常开车从任意一个城市到另外一个城市,因此他需要频繁地上交过路费,由于忙于做生意,所以他无时间来寻找交过路费最低的行驶路线.然而, 当他交的过路费越多他的心情就变得越糟糕. 作…
依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最小生成树. 常见的最小生成树算法有Kruskal算法和Prim算法. Kruskal算法每次选取权值最小的边.然后检查是否增加后形成回路,假设形成回路则须要放弃.终于构成最小生成树.n个顶点的图最小生成树过程例如以下: 边的权值升序排序. 选取全部未遍历的边中权值最小的边,推断增加后是否形成回路,若…
[BZOJ2238]Mst Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的边在下一条询问中依然存在) Input 第一行两个正整数N,M(N<=50000,M<=100000)表示原图的顶点数和边数. 下面M行,每行三个整数X,Y,W描述了图的一条边(X,Y),其边权为W(W<=10000).保证两点之间至多只有一条边. 接着一行一个正整数Q,表示询问数.(1&l…