测试准确率计算方法说明 pre.eq(target).float().sum().item() 待办 pred = logits.argmax(dim=1) correct += pred.eq(target).float().sum().item() 这句意思就是输出最大值的索引位置,这个索引位置和真实值的索引位置比较相等的做统计就是这个批次准确的个数用来做统计分析…
public class Timing { private TimeSpan m_StartTime; private TimeSpan duringTime; public Timing() //构造函数用于初始化开始时间和持续时间 { ); //初始化的时候设置时间为00:00:00 ); } public void StartTime() { GC.Collect(); //为了防止程序运行的时候有无用单元干扰提前进行GC收集 GC.WaitForPendingFinalizers();…
类的内置方法 它与内置函数有紧密的联系,有的内置函数就是调用的内置方法. 在顶级父类obj中有: 两个双下方法 obj.__str__ str(obj) obj.__repr__ repr(obj) 1.__str__ 与 __repr__ class Teacher: def __init__(self, name, salary): self.name = name self.salary = salary def __str__(self): return "Teacher's objec…
pytorch做手写数字识别 效果如下: 工程目录如下 第一步  数据获取 下载MNIST库,这个库在网上,执行下面代码自动下载到当前data文件夹下 from torchvision.datasets import MNIST import torchvision mnist = MNIST(root='./data',train=True,download=True) print(mnist) print(mnist[0]) print(len(mnist)) img = mnist[0][…
import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvision import transforms from torch import nn, optim from torch.nn import functional as F EPOCH = 1000 BATCH_SIZE = 128 LR = 0.001 DOWNLOAD_MNIST = False…
dataset.py ''' 准备数据集 ''' import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import ToTensor,Compose,Normalize import torchvision import config def mnist_dataset(train): func = torch…
​  目录 1 : 事先准备 . 2 : 代码阅读. 2.1: 数据读取 2.2: 模型载入 3 训练过程: 4 测试过程: 5 :线性验证 6 : 用自己数据集进行对比学习. 第一:  改数据集 : 2 改变batch_size和图片大小. 写在前面的话 CSDN真的是'sb'中的'sb'软件, 辛辛苦苦写半天  我复制个东西过来 他就把前面的刷没了 还要我重头写????????????神经并b -------------------------------------------------…
之前一直不清楚Top1和Top5是什么,其实搞清楚了很简单,就是两种衡量指标,其中,Top1就是普通的Accuracy,Top5比Top1衡量标准更“严格”, 具体来讲,比如一共需要分10类,每次分类器的输出结果都是10个相加为1的概率值,Top1就是这十个值中最大的那个概率值对应的分类恰好正确的频率,而Top5则是在十个概率值中从大到小排序出前五个,然后看看这前五个分类中是否存在那个正确分类,再计算频率.Pytorch实现如下: def evaluteTop1(model, loader):…
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks Task #1: Masked LM Task #2: Next Sentence Prediction Pre-training Procedure Fine-tuning Procedure Comparison of BERT and OpenAI GPT 实验 GLUE Datasets G…
一段时间没有更新博文,想着也该写两篇文章玩玩了.而从一个简单的例子作为开端是一个比较不错的选择.本文章会手把手地教读者构建一个简单的Mnist(Fashion-Mnist同理)的分类器,并且会使用相对完整的Pytorch训练框架,因此对于初学者来说应该会是一个方便入门且便于阅读的文章.本文的代码来源于我刚学Pytorch时的小项目,可能在形式上会有引用一些github上的小代码.同时文风可能会和我之前看的一些外国博客有点相近. 本文适用对象: 刚入门的Pytorch新手,想要用Pytorch来完…