求n个逆元的O(n)算法】的更多相关文章

它的推导过程如下,设,那么 对上式两边同时除,进一步得到 再把和替换掉,最终得到 初始化,这样就可以通过递推法求出模奇素数的所有逆元了. 转自  http://blog.csdn.net/acdreamers/article/details/8220787…
求用delphi编写的LRC校验位算法函数,急!!! 某命令串为":010200000001FC" 其16进制为“3A 30 31 30 32 30 30 30 30 30 30 30 31 46 43 0D 0A”.其中第一个为起始符,2-13为数据,14-15即“FC”为LRC校验码,有人能写一个取得校验位的函数吗?下边有一段用VC写的程序 将帧的内容,除去头代码,用十六进制表示,求和,模FF,然后取补码,以ASCII码表示即可. 例如:ASCII帧 3A 30 31 30 32…
c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,88,99 共9个: * 请问:n位的回文数有多少个?请编写一个递归函数来解决此问题!!! [输入形式]一行一个正整数,代表多少位 [输出形式]一行一个正整数,代表回文诗的个数 [样例输入]2 [样例输出]9 输入: 3 输出: 90 输入: 5 输出: 900 输入: 10 输出: 90000 输入…
转自:http://www.2cto.com/kf/201401/272375.html 新学的一个求逆元的方法: inv[i] = ( MOD - MOD / i ) * inv[MOD%i] % MOD 证明: 设t = MOD / i , k = MOD % i 则有 t * i + k == 0 % MOD 有 -t * i == k % MOD 两边同时除以ik得到 -t * inv[k] == inv[i] % MOD 即 inv[i] == -MOD / i * inv[MOD%i…
回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p[ i ]记录以 str[ i ] 为中间字符的回文串向右能匹配的长度.先看个例子 原串:       w  a   a   b   w   s   w   f   d 新串(str):  #   w  #   a   #   a   #   b  #   w   #   s    #   w   …
原理 数据结构 G = {'key':[v1,v2,v3],'key':[v1,v2,v3]}; VN = []; Vt = []; FirstVT = {'key':[v1,v2,v3],'key':[v1,v2,v3]}; 也就是map里放list,同样将文法压缩,对于产生式相同的发到一个map元素里,追加到map元素对应的list后面 算法过程 1. 先求出直接满足A->a 或 A->Ba的文法的A的FIRSTVT集合 2. 扫描FIRSTVT集,将满足蔓延性公式的终结符加到非终结符的F…
最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,当中一个最小的公倍数是他们的最小公倍数,相同地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两数的最大公约数 ③ 若c≠0,则a=b,b=c,再回去运行① 比如求27和15的最大公约数过程为: 27÷15 余1215÷12余312÷3余0…
把以前写的一些经验总结汇个总,方便给未来的学弟学妹们做个参考! --------------------------永远爱你们的:Sakura 最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两…
网上看了一些归并排求逆序对的文章,又看了一些树状数组的,觉得自己也写一篇试试看吧,然后本文大体也就讲个思路(没有例题),但是还是会有个程序框架的 好了下面是正文 归并排求逆序对 树状数组求逆序对 一.归并排求逆序对 温馨提示:阅读这段内容需要的知识点:归并排序 — 首先的话,归并排序大家应该都知道的吧?归并排是利用分治的思想,先分后和,分到左右区间相等或相交时在返回上一层进行两个有序小数组交错插入排序,形成一个有序数组,然后层层返回排好序的数组,作为新的小数组插入大数组排序,这就是一个n log…
题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + ... . + p1^a1)*(1 + p2 + p2^2 + ... . + p2^a2)*(1 + pn + pn^2 + .... + pn^an).又由等比数列求和公式可知 1 + pn + pn^2 + .... + pn^an =(pn^an - 1)/(pn - 1).因为要mod 99…
题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元. 我们可以通过求b关于p的乘法逆元k,将a乘上k再模p, 即(a*k) mod p.其结果与(a/b) mod p等价.  题目解析:让求a^b的因子和modk,因为是大数没法直接求,因为求因子和函数是乘性函数,所以首先要质因子分解,化成…
求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序.以下图为例: G图 结点第二次被访问即为退出之时,那么我们可以得到结点的退出顺序 (2)倒转每一条边的方向,构造出一个反图G’.然后按照退出顺序的逆序对反图进行第二次DFS遍历.我们按1.4.2.3.5的逆序第二次DFS遍历: G`图   访问过程如下: 每次遍历得到的那些点即属于同一个强连通分量…
目录 1.斐波那契数列(Fibonacci)介绍 2.朴素递归算法(Naive recursive algorithm) 3.朴素递归平方算法(Naive recursive squaring) 4 .自底向上算法(Bottom-up) 5. 递归平方算法(Recursive squaring) 6.完整代码(c++) 7.参考资料 内容 1.斐波那契数列(Fibonacci)介绍 Fibonacci数列应该也算是耳熟能详,它的递归定义如上图所示. 下面2-6分别说明求取Fibonacci数列的…
最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两数的最大公约数 ③ 若c≠0,则a=b,b=c,再回去执行① 例如求27和15的最大公约数过程为: 27÷15 余1215÷12余312÷3余0…
Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2582    Accepted Submission(s): 1665 Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferlan…
我们现在要求1~n在mod m意义下的逆元(n<m,m为素数). 对于一个[1,n]中的数i,我们令\(k=\lfloor\frac{m}{i}\rfloor,r=m \ mod \ i\) 然后\(ki+r \equiv 0 (mod \ m)\) 两边同时乘上\(i^{-1}r^{-1}\),得到\(kr^{-1}+i^{-1} \equiv 0 (mod \ m)\) 因此\(i^{-1} \equiv -kr^{-1}(mod \ m)\) r是一个比i小的数,所以如果从小到大枚举i,就…
PS:此文章为转载,源地址:http://www.newsmth.net/nForum/#!article/CoderInterview/849     作者应该是在美国进行的笔试面试,感觉面试的的公司也很NB,其准备过程很值得借鉴 原文如下: 其实早在8月份我刚来美国的时候我们就开始准备这个事情了.那个时候我通过她的朋友认识了一个在G公司工作的师兄,并且打电话聊了一下.    事实证明这个电话对于我后来找工作的过程有着至关重要的影响.师兄推荐了四本书给我:CLRS,Programming Pe…
Description Yehan is a angry grumpy rabbit, who likes jumping into the hole. This day,Yehan jumps again in the pit at home. Each time, he should jump from the hole at the coordinate (1,1) to (n,m), and he has to jump as the way : he can only jump (x,…
最大公约数(最大公因数):指某几个整数共有约数中最大的一个. 求两个整数最大公约数主要的方法: 列举法:各自列出约数,再找出最大的公约数. 素因数分解法:两数各作素因数分解,然后取出共有的项乘起来. 短除法 辗转相除法(扩展版):常使用于直观上不容易判别公约数的场合. Java程式代码: 以下使用辗转相除法实现. private int GCD(int a, int b) { if(b==0) return a; return a % b == 0 ? b : GCD(b, a % b); }…
水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深度. 把深的节点先往上跳. 深度相同了之后,一起往上跳. 最后跳到一起了就是LCA了. 预处理:O(n) 每次查询:O(n) 2.倍增LCA 朴素LCA的一种优化. 一点一点跳,显然太慢了. 如果要跳x次,可以把x转换为二进制. 每一位都是1或0,也就是跳或者不跳. 在第i位,如果跳,就向上跳2(i…
代码: public class A的N次幂 { public static void main(String[] args) { int a = 2; int n = 60; long t = System.nanoTime(); // 纳秒 System.out.println(pow0(a, n)); System.out.println("pow0()所花时间:"+(System.nanoTime()-t)+"ns"); t = System.nanoTim…
到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1(%p),转化为ax+py≡1,拓展欧几里得可解决ax+by=gcd(a,b) void exgcd(int a,int b,int &x,int &y) { ) { x=,y=; return a; } int g=exgcd(b,a%b,x,y); int t=x;x=y;y=t-(a/b)…
扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博主全国通用的模板,代码十分简洁,但并没有理解其原理,学的时候也只了解了个大概. 来看代码吧: #include<bits/stdc++.h> using namespace std; int E_GCD(int a,int b,int &x,int &y) { if(!a&…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复杂度为O(n). 求最长回文子串这个问题,我听说有个分治+拓展kmp的算法,后缀数组也可以. 但是对于求回文串来说,manacher算法肯定有很多其他算法没有的优点. 现在进入正题: 首先,在字符串s中,用rad[i]表示第i个字符的回文半径,即rad[i]尽可能大,且满足: s[i-rad[i],…
如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. Tarjan算法是用来求有向图的强连通分量的.求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的…
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同..就不不同的串..如 1 1 的长度为1的子串有两个 题解: 解题前可以先求一下1000000000内有多少个数是lucky的...可以递推的求..也可以暴力求~~可以看出最多1022个lucky数..很少... 现将这堆数的所有lucky数找出来...把相同的放在一个lucky数里计数... d…
关于求最短路径: 求最短路径的算法有许多种,除了排序外,恐怕是OI界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra(不能求又负权边的图),接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们想要求出每一对顶点之间的最短路径的话,还可以用Floyd-Warshall. 关于松弛: 松弛操作的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式.所谓对i,j进行松弛,就是判定是否d[j]>d[i]+w[i,j],如果该式成立则将…
小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就是遍历图中的每一个点,然后进行深度遍历,看最后能否回归到这个点上.如果可以回归,那么这个点肯定在一个强连通分量上.可是最后想着想着就乱了...... 没办法,自己low啊,就百度了求有向图中强连通分量的算法,于是乎tarjan算法出现在搜索结果上. 下面说一下,tarjan算法用到的一些图的概念.…
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量. [算法思想] 用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点.(实际操作中low[i]不一定最小,但不会影响程序的最终结果) 程序开始时,time初始化为0,在dfs遍历到v时,low[v]=df…