Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n, 表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了 一个角上,坐标正好是(0, 0). 能量汇集机器在…
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过程中有一定的能…
刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_{j=1}^{M}gcd(i,j)\space-m*n$ $=2*\sum_{i=1}^{N}\sum_{j=1}^M\sum_{d|gcd(i,j)}\varphi(d)\space-m*n$ $=2*\sum_{i=1}^{\lfloor \frac{N}{d}\rfloor}\sum_{j=1…
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ 后面那个就莫比乌斯反演入门题辣$QwQ$? 就变成$\sum_{p=1}^{n}[p\mbox{为质数}]\sum_{d=1}^{n/p}\mu(d)\lfloor \frac {n/p}{d}\rfloor^2$ 十分套路的,后面显然可以数论分块,就变成了$\sum_{p=1…
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过…
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 又有某不知名神奇定理:一个数的所有因子的phi之和等于这个数本身,其中phi是欧拉函数 因此题目转化为求如下: 我们把式子变个型,就成了如下式子: 然后一个前缀和优化,O(n+sqrt(n))解决 Code: #include<iostream> #include<cstdio> #i…
http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么就是求: $$\sum_{x=1}^{n} \sum_{y=1}^{m} 2 \times ((x,y)-1) + 1$$ 提出式子可得 $$-n \times m + 2\sum_{x=1}^{n} \sum_{y=1}^{m} (x,y)$$ 然后右边那个是裸的分块+欧拉函数了..不会的请看我原…
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标…
[Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n, 表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了 一个角上,坐标正好是(…
题面: bzoj luogu NOI2010能量采集 题解 读完题之后我们发现在每个产生贡献的点\((x1,y1)\)中,它与原点之间的点\((x2,y2)\)都满足\(x2|x1\),\(y2|y1\).现在我们要求它与原点之间点的个数,也就是这个点\((x,y)\)最大可以被除以多少--肯定是\(gcd(x1,y1)\)啊. 所以我们就知道怎么做啦:\(2\times \sum_{i=1}^n\times \sum_{j=1}^m\times gcd(i,j)-n\times m\) 中间的…