首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数据挖掘之clara算法原理及实例(代码中有bug)
】的更多相关文章
数据挖掘之clara算法原理及实例(代码中有bug)
继上两篇文章介绍聚类中基于划分思想的k-means算法和k-mediod算法 本文将继续介绍另外一种基于划分思想的k-mediod算法-----clara算法 clara算法可以说是对k-mediod算法的一种改进,就如同k-mediod算法对k-means算法的改进一样. clara(clustering large application)算法是应用于大规模数据的聚类.而其核心算法还是利用k-mediod算法. 只是这种算法弥补了k-mediod算法只能应用于小规模数据的缺陷. clara算…
Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
第一篇:K-近邻分类算法原理分析与代码实现
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
最短路径A*算法原理及java代码实现(看不懂是我的失败)
算法仅仅要懂原理了,代码都是小问题,先看以下理论,尤其是红色标注的(要源代码请留下邮箱,有測试用例,直接执行就可以) A*算法 百度上的解释: A*[1](A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法. 公式表示为: f(n)=g(n)+h(n), 当中 f(n) 是从初始点经由节点n到目标点的估价函数, g(n) 是在状态空间中从初始节点到n节点的实际代价, h(n) 是从n到目标节点最佳路径的预计代价. 保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:…
一致性Hash算法原理及C#代码实现
一.一致性Hash算法原理 基本概念 一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下: 整个空间按顺时针方向组织.0和232-1在零点中方向重合. 下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下: 接下来使用如下算法定位数据访问到相应服务器:将数据…
第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
Apriori 关联分析算法原理分析与代码实现
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
第十四篇:Apriori 关联分析算法原理分析与代码实现
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
常见排序算法原理及JS代码实现
目录 数组 sort() 方法 冒泡排序 选择排序 插入排序 希尔排序 归并排序 堆排序 快速排序 创建时间:2020-08-07 本文只是将作者学习的过程以及算法理解进行简单的分享,提供多一个角度的理解说明,或许让你的困惑能得以解决(代码或说明若有问题,欢迎留言.联系更正!以免造成更多困惑) 如果要更深入研究这些算法的同学,社区中同类型更优秀,单个算法更深入剖析的文章也是比比皆是,这里或许作为一个常见排序算法入门学习了解更准确 排序名称 最快时间 最慢时间 空间复杂度 冒泡排序 O(n) O(…
KNN算法原理(python代码实现)
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类. - 优点:精度高.对异常值不敏感.无数据输入假定. - 缺点:计算复杂度高.空间复杂度高. - 适用数据范围:数值型和标称型. 举个简单的例子,一群男生和一群女生,我们知道他们的身高和性别. 如下表格: 身高 性别 165 女 16…
MySQL索引背后的数据结构及算法原理(employees实例)
摘要 http://blog.codinglabs.org/articles/theory-of-mysql-index.html 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内…
【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了.如下图所示: 第二步.根据距离进行分类 红色和蓝色的点代表了我们随机选取的质心.既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首…
K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
第十三篇:K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(boosting)系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 一 回顾boosting算法的基本原理 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.…
【机器学习】Apriori算法——原理及代码实现(Python版)
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是其中非常著名的算法之一.关联分析,主要是通过算法在大规模数据集中寻找频繁项集和关联规则. 频繁项集:经常出现在一起的物品或者属性的集合 关联规则:物品或者属性之间存在的内在关系(统计学上的关系) 所以,我们常见的Apriori算法中的主要包含两大模块内容,一块是寻找频繁项集的函数模块,一块是探索关联…
Python实现的选择排序算法原理与用法实例分析
Python实现的选择排序算法原理与用法实例分析 这篇文章主要介绍了Python实现的选择排序算法,简单描述了选择排序的原理,并结合实例形式分析了Python实现与应用选择排序的具体操作技巧,需要的朋友可以参考下 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟…
如何做系列(4)-微博URL短网址生成算法原理(java版、php版实现实例)
短网址(Short URL),顾名思义就是在形式上比较短的网址.通常用的是asp或者php转向,在Web 2.0的今天,不得不说,这是一个潮流.目前已经有许多类似服务,借助短网址您可以用简短的网址替代原来冗长的网址,让使用者可以更容易的分享链接. 例如:http://t.cn/SzjPjA 短网址服务,可能很多朋友都已经不再陌生,现在大部分微博.手机邮件提醒等地方已经有很多应用模式了,并占据了一定的市场.估计很多朋友现在也正在使用. 看过新浪的短连接服务,发现后面主要有6个字符串…
【算法】(查找你附近的人) GeoHash核心原理解析及代码实现
本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点(曲线突变--8个邻居来解决) 6. geohash的php .python.java.C#实现代码 7. 参考资料 引子 机机是个好动又好学的孩子,平日里就喜欢拿着手机地图点点按按来查询一些好玩的东西.某一天机机到北海公园游玩,肚肚饿了,于是乎打开手机地图,搜索北海公园附近的餐馆,并选了其中一家用餐…
js/ajax跨越访问-jsonp的原理和实例(javascript和jquery实现代码)
最近做了一个项目,需要用子域名调用主域名下的一个现有的功能,于是想到了用jsonp来解决,在我们平常的项目中不乏有这种需求的朋友,于是记录下来以便以后查阅同时也希望能帮到大家,需要了解的朋友可以参考下 很庆幸,我又见到了末日后新升的太阳,所以我还能在这里写文章,言归正传哈,最近做了一个项目,需要用子域名调用主域名下的一个现有的功能,于是想到了用jsonp来解决,在我们平常的项目中不乏有这种需求的朋友,于是记录下来以便以后查阅同时也希望能帮到大家. 什么是JSONP协议? JSONP即JSON w…
AC-BM算法原理与代码实现(模式匹配)
AC-BM算法原理与代码实现(模式匹配) AC-BM算法将待匹配的字符串集合转换为一个类似于Aho-Corasick算法的树状有限状态自动机,但构建时不是基于字符串的后缀而是前缀.匹配 时,采取自后向前的方法,并借用BM算法的坏字符跳转(Bad Character Shift)和好前缀跳转(Good Prefix Shift)技术. 坏字符跳转即当字符串树中的字符与被匹配内容x失配时,将字符串树跳转到下一个x的出现位置,如果x的字符串树不存在, 则将字符串树向左移动字符串树的最小字符串长度.…
深入一致性哈希(Consistent Hashing)算法原理,并附100行代码实现
转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和Java实现,以及效果测试. 背景介绍 一致性Hashing在分布式系统中经常会被用到, 用于尽可能地降低节点变动带来的数据迁移开销.Consistent Hashing算法在1997年就在论文Consistenthashing and random trees中被提出. 先来简单理解下Hash是解决…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…
stacking算法原理及代码
stacking算法原理 1:对于Model1,将训练集D分为k份,对于每一份,用剩余数据集训练模型,然后预测出这一份的结果 2:重复上面步骤,直到每一份都预测出来.得到次级模型的训练集 3:得到k份测试集,平均后得到次级模型的测试集 4: 对于Model2.Model3…..重复以上情况,得到M维数据 5:选定次级模型,进行训练预测 ,一般这最后一层用的是LR. 优缺点: 优点: 1. 采用交叉验证方法构造,稳健性强: 2. 可以结合多个模型判断结果,进行次级训…
学习《深度学习与计算机视觉算法原理框架应用》《大数据架构详解从数据获取到深度学习》PDF代码
<深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背后的原理,实例部分提供了一些工具,很实用. <大数据架构详解:从数据获取到深度学习>从架构.业务.技术三个维度深入浅出地介绍了大数据处理领域端到端的知识. <深度学习与计算机视觉 算法原理.框架应用>PDF,带书签,347页. <大数据架构详解:从数据获取到深度学习>PDF,带书签,373页. 配套源代码. 网盘下载:http://1…
最全排序算法原理解析、java代码实现以及总结归纳
算法分类 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序. 详情如下: 算法评估 排序算法的性能依赖于以下三个标准: 稳定性:如果a原本在b前面,而a=b,排序之后a仍然在b的前面,则稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在…
(转载)微软数据挖掘算法:Microsoft 神经网络分析算法原理篇(9)
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,在开始Microsoft 神经网络分析算法之前,本篇我们先将神经网络分析算法做一个简单介绍,此算法由于其本身的复杂性,所以我打算在开始之前先将算法原理做一个简单的总结,因为本身该算法就隶属于高等数学的研究范畴,我们对算法的推断和验证过程不做研究,只介绍该算法特点以及应用场景,且个人技术能力有…
【机器学习】算法原理详细推导与实现(六):k-means算法
[机器学习]算法原理详细推导与实现(六):k-means算法 之前几个章节都是介绍有监督学习,这个章解介绍无监督学习,这是一个被称为k-means的聚类算法,也叫做k均值聚类算法. 聚类算法 在讲监督学习的时候,通常会画这样一张图: 这时候需要用logistic回归或者SVM将这些数据分成正负两类,这个过程称之为监督学习,是因为对于每一个训练样本都给出了正确的类标签. 在无监督学习中,经常会研究一些不同的问题.假如给定若干个点组成的数据集合: 所有的点都没有像监督学习那样给出类标签和所谓的学习样…
Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用…
Camera图像处理原理及实例分析-重要图像概念
Camera图像处理原理及实例分析 作者:刘旭晖 colorant@163.com 转载请注明出处 BLOG:http://blog.csdn.net/colorant/ 主页:http://rgbbones.googlepages.com/ 做为拍照手机的核心模块之一,camera sensor 效果的调整,涉及到众多的参数,如果对基本的光学原理及 sensor 软/硬件对图像处理的原理能有深入的理解和把握的话,对我们的工作将会起到事半功倍的效果.否则,缺乏了理论的指导,只能是凭感觉和经验…