题目: Problem B: Throwing cards away I Given is an ordered deck of n cards numbered 1 to n with card 1 at the top and card n at the bottom. The following operation is performed as long as there are at least two cards in the deck: Throw away the top car…
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当于从出度大于入度的运一个流量到 入度大于出度的点. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流) 所以我们可以把源点S到所有出度大于入度的点连一条弧, 弧的容量是出度-入度的一半 为什么容量是这样呢,等一下说 同理, 把所有入度大于出度的点和汇点T连一条弧, 弧的容量是入…
题意:给你n个数,在里面取4个数,可以重复取数,使和不超过M,求能得到的最大的数是多少: 思路:比赛时,和之前的一个题目很像,一直以为是体积为4(最多选择四次)的完全背包,结果并不是,两两求和,然后二分枚举; 完全背包是固定的体积,然后尽量使得装下的重量最大: 这个题目是固定的体积,但求在不超过该重量的情况下能得到的最大值. 至于为啥不是完全背包到现在还找到一个反例,以后再修改: 不过看到一共选择四次的时候,就应该想到是暴力... 比较相似的一个题目,12年的省赛题目:http://acm.sd…
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M!的倍数 所以只要求1到M!中与M!互质的数的个数,在乘上N!/M! 可以理解为每一块M!有这么多,然而N!中有很多块M!,所以乘上N!/M! 然后根据phifac[n] = phi[n!] = n!(1-1/p1)(1-1/p2)......(1-1/k)的定义可以得出 当n为质数的时候 phifac[n]…
就是求混合图是否存在欧拉回路 如果存在则输出一组路径 (我就说嘛 咱的代码怎么可能错.....最后的输出格式竟然w了一天 我都没发现) 解析: 对于无向边定向建边放到网络流图中add(u, v, 1); 对于有向边放到另一个图中add2(u, v); 然后就是混合边求是否有欧拉 一边dinic后 遍历每一条边 如果不是反向边 且 起点不是s 终点不是t 如果Node[i].c == 0 则 add2(Node[i].v, Node[i].u); else add2(Node[i].u, Node…
这道题想了很久不知道怎么设置状态,怎么拓展,怎么判重, 最后看了这哥们的博客 终于明白了. https://blog.csdn.net/u014800748/article/details/47400557 这道题的难点在于怎么设置联通的状态,以及怎么拓展判重 . (1)状态:这里状态先定义了一个格子cell, 有x和y坐标.然后set<cell>表示一个联通块, 再用set<set<cell>>表示n个连块可以组成的所有联通块, 这里是集合套集合. (2)拓展:每个格…
Problem Description The i’th Fibonacci number f(i) is recursively defined in the following way: •f(0) = 0 and f(1) = 1 •f(i + 2) = f(i + 1) + f(i) for every i ≥ 0 Your task is to compute some values of this sequence Input Input begins with an integer…
书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最优的移动士兵的方式, 使得与敌方相邻的阵营中最少的士兵最多 因为只能在我方的阵营中移动士兵, 所以建模的时候不用加入地方阵营的点. 首先因为士兵只能移动一次, 所以把点拆成两个点, 入点和出点. 设阵营士兵的人数为k[i] 那么源点到入点连一条弧, 容量为k[i], 然后入点和出点再连 一条弧, 容…
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通,第i个套餐的花费为ci. kruskal: 先求一次原图的最小生成树,得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,则枚举套餐之后再求最小生成树. key: kruskal算法中,那些两端已经属于同一个连通分量的边不会再加到…
 Cutting Chains  What a find! Anna Locke has just bought several links of chain some of which may be connected. They are made from zorkium, a material that was frequently used to manufacture jewelry in the last century, but is not used for that purpo…