多层神经网络与C++实现】的更多相关文章

首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
用Tensorflow实现多层神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 ReLU激活函数/L1范数版本 Sigmoid激活函数/交叉熵函数版本 数据集及网络结构 数据集 使用预测出生体重的数据集csv格式,其中数据的第2列至第8列为训练属性,第9列为体重数据即标签,第一列为标记是否为低出生体重的标记,本博文中不对其进行讨论. Low Birthrate data: Columns(列) Vari…
Spark2.0 MLPC(多层神经网络分类器)算法概述 MultilayerPerceptronClassifier(MLPC)这是一个基于前馈神经网络的分类器,它是一种在输入层与输出层之间含有一层或多层隐含结点的具有正向传播机制的神经网络模型.  中间的节点使用sigmoid (logistic)函数,输出层的节点使用softmax函数.输出层的节点的数目表示分类器有几类.MLPC学习过程中使用BP算法,优化问题抽象成logistic loss function并使用L-BFGS进行优化.…
ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程.就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习地址:http://ufldl.stanfor…
多层感知机(multilayer perceptron,简称MLP)是最基础的深度学习模型. 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer).隐藏层位于输入层和输出层之间.隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接.因此,多层感知机中的隐藏层和输出层都是全连接层. 仿射变换 在描述隐藏层的计算之前,我们看看多层感知机输出层是怎么计算的.输出层的输入是隐藏层的输出,通常我们将隐藏层的输出称为隐藏层变量或隐藏变量.…
写在前面的 接触神经网络(ANN)的时间很长了,以前也只是学了学原理,做过一个BPN的练习,没有系统的总结过,最近看Torch的源码,对MLP有了更多的了解,写写自己学到的东西吧,算是做了一次总结! ANN的特点 (1) 高度的并行性 人工神经网络是由许多相同的简单处理单元并联组合而成,虽然每个单元的功能简单,但大量简单单元的并行活动,使其对信息的处理能力与效果惊人. (2) 高度的非线性全局作用 神经网络系统是由大量简单神经元构成的,每个神经元接受大量其他神经元的输入,通过非线性输入.输出关系…
线性回归.对数几率回归模型,本质上是单个神经元.计算输入特征加权和.偏置视为每个样本输入特征为1权重,计算特征线性组合.激活(传递)函数 计算输出.线性回归,恒等式(值不变).对数几率回归,sigmoid.输入->权重->求和->传递->输出.softmax分类含C个神经元,每个神经元对应一个输出类别. XOR异或运算,无法通过线性模型解决.sigmoido类型神经元要求数据线性可分.2D数据存在直线,高维数据存在超平面,把不同类别样本分隔. 在神经网络输入和输出之间插入更多神经元…
最近在看<Neural Network Design_Hagan> 然后想自己实现一个XOR 的网络. 由于单层神经网络不能将异或的判定分为两类. 根据 a^b=(a&~b)|(~a&b) 而 我试了一下 或 和 与 都可以用感知神经元解决,也就是一个. 那么与和或的实现: hardlim (n )=a ,n>=0时 a=1;n<0时a=0: 显然需要三个神经元 神经元表达式如下: int fun(int w[],int x[],int b) { return w[…
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 开一个我的github传送门,可以看到代码. https://github.com/VVV-LHY/deeplearning.ai/tree/master/NeuralNetworkandDeepLearning/L_layerNeuralNetwork 今天搭建了两个神经网络:一个是包含两个隐含层…