使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐波那契数字.例如,1返回1 6返回8 我选择了两种方法,一种是将list变成一个队列,另一个则是使用环形队列.不多说,直接上代码:后面我会对为什么这样实现做一个解释 第一个是使用队列的方式: def fibonacciSeq(num): fibonacciSeqList = [] for i in…
斐波那契数列Fibonacci 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 特别指出:第0项是0,第1项是第一个1. 这个数列从第2项开始,每一项都等于前两项之和.   NSArray *array = [self fibonacci:INT8_MAX];       //计算 Fibonacci…
斐波纳契数列 Fibonacci 输出这个数列的前20个数是什么? 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 使用数组实现输出数列的前30个数 //一维数组排序,选择法 #include <iostream> using namespace std; int main(){ //定义一个一维数组 ]={,}; //造fabonacci数组 ;i<;i++) { arr[i]=arr[i-]+arr[i-]; } //遍历一下…
更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始代码更加简洁易懂).实验结果表明,这种方法在计算的斐波那契数列足够长时,可以提高性能. 矩阵方式计算斐波那契数列的原理: 代码: #include <tbb/task_scheduler_init.h> #include <tbb/blocked_range.h> #include &…
题目:斐波那契数列. 程序分析:斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……. 在数学上,斐波那契数列是以递归的方法来定义: F0 = 0 (n=0)F1 = 1 (n=1)Fn = F[n-1]+ F[n-2](n=>2)--------------------- 方法一:使用递归计算 def fibonacci(month): if month == 1: return 1 elif month…
已知K阶斐波那契数列定义为:f0 = 0,  f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … 给定阶数k和n的值,求fn的值. 既然是递归数列,那我们就用递归函数来实现,具体代码如下: 大家有其他更好的算法,欢迎留言讨论,共同学习. 关于斐波那契的一个小段子,跟大家分享,说学校食堂的菜就是八大菜系之后的第九大菜系斐波那契菜,哈哈哈. 博客地址:https://www.cnblogs.com…
斐波那契数列定义 Fibonacci array:1,1,2,3,5,8,13,21,34,... 在数学上,斐波那契数列是以递归的方法来定义: F(0) = 0 F(1) = 1 F(n) = F(n-1) + F(n-2) 用文字描述,就是斐波那契数列由0和1开始,之后的斐波那契系数就是由之前的两数之和想加而得,首几个斐波那契数列系数是:0,1,1,2,3,5,8,13,21,34,55,...特别指出:0不是第一项,而是第零项. 递归解法 最容易想到的解法自然是按照公式的递归解法,具体实现…
题目1:写一个函数,输入n,求Fibonacci数列的第n项.该数列定义如下: n=0时,f(n)=0; n=1时,f(n)=1; n>1时,f(n)=f(n-1)+f(n-2) 1. 效率差的递归算法:时间复杂度以n的指数的方式递增.因为求f(10)=f(9)+f(8);f(9)=f(8)+f(7);f(8)=f(7)+f(6):可以看出有很多项是重复计算的. //斐波那契数列,递归.通过测试 //f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2) public class Fi…
1 前言 斐波拉契数列有递归写法和尾递归和迭代写法. 2 代码 //recursion func fib(n int) int{ if n < 2{ return n }else{ return fib(n-1) + fib(n-2) } } func fibcore(n int) (int,int){ if n < 2{ return 0,n }else{ a,b := fibcore(n-1) return b,a+b } } //tail recursion func fib2(n in…
import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { // TODO Auto-generated method stub Scanner in=new Scanner(System.in); System.out.println("斐波那契数列的个数是:"); int total=in.nextInt(); System.out.println("…