图像的形变与缩放,使用的是skimage的transform模块,函数比较多,功能齐全. 1.改变图片尺寸resize 函数格式为: skimage.transform.resize(image, output_shape) image: 需要改变尺寸的图片 output_shape: 新的图片尺寸 from skimage import transform,data import matplotlib.pyplot as plt img = data.camera() dst=transfor…
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_contours) measure模块中的find_contours()函数,可用来检测二值图像的边缘轮廓. 函数原型为: skimage.measure.find_contours(array, level) array: 一个二值数组图像 level: 在图像中查找轮廓的级别值 返回轮廓列表集合,…
python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot a…
原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作.   Win8Metro编程中,图像相关的操作基本都是以流的形式进行的,图像对象类型在Metro主要表现为两种形式:BitmapImage和WriteableBitmap,图像的显示控件为Image.   我们可以用如下方式打开和显示一幅图像对象. BitmapImage srcImage=newBitmapImage (new Uri(…
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的. 要使用python进行各种开发和科学计算,还需要安装对应的包.这和matlab非常相似,只是matla…
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的. 要使用python进行各种开发和科学计算,还需要安装对应的包.这和matlab非常相似,只是matla…
原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述  图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> /// Get rgba value from source image. /// </summary> /// <param name="src">The source image.</param> /// <returns></ret…
实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可以这样写: import matplotlib.pyplot as plt plt.imshow(img) imshow()函数格式为: matplotlib.pyplot.imshow(X, cmap=None) X: 要绘制的图像或数组. cmap: 颜色图谱(colormap), 默认绘制为R…
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matplotlib inline 读入我们需要的图像 apple = cv2.imread("apple.jpg") apple = cv2.resize(cv2.cvtColor(apple,cv2.COLOR_BGR2RGB),(200,200)) plt.imshow(apple) plt.…
图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像. 在skimage库中,阈值分割的功能是放在filters模块中. 我们可以手动指定一个阈值,从而来实现分割.也可以让系统自动生成一个阈值,下面几种方法就是用来自动生成阈值. 1.threshold_otsu 基于Otsu的阈值分割方法,函数调…
对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子可用来检测边缘 函数格式为:skimage.filters.sobel(image, mask=None) from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() edges = fil…
一.图像数据类型及转换 在skimage中,一张图片就是一个简单的numpy数组,数组的数据类型有很多种,相互之间也可以转换.这些数据类型及取值范围如下表所示: Data type Range uint8 0 to 255 uint16 0 to 65535 uint32 0 to 232 float -1 to 1 or 0 to 1 int8 -128 to 127 int16 -32768 to 32767 int32 -231 to 231 - 1 一张图片的像素值范围是[0,255],…
首先导入必要的库,使用Opencv读入图像,避免复杂的图像解析,同时使用Opencv作为算法的对比,由于使用环境为jupyter使用matplotlib直接可视化 import cv2 import matplotlib.pyplot as plt import numpy as np %matplotlib inline 图片的存储 图片实质上就是一个矩阵,一个640*320的灰白图像其实就是一个(640,320)的矩阵,每个坐标点的值就代表该像素点的灰度. 通常我们使用0-256的值来表示灰…
有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理.这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理. 图片集合函数为: skimage.io.ImageCollection(load_pattern,load_func=None) 这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串.第二个参数load_func是一个回调函数,我们对图片进行批量处理就可以通过这个回调函数实现.回调函数默认为im…
图片读入程序中后,是以numpy数组存在的.因此对numpy数组的一切功能,对图片也适用.对数组元素的访问,实际上就是对图片像素点的访问. 彩色图片访问方式为: img[i,j,c] i表示图片的行数,j表示图片的列数,c表示图片的通道数(RGB三通道分别对应0,1,2).坐标是从左上角开始. 灰度图片访问方式为: gray[i,j] 例1:输出小猫图片的G通道中的第20行30列的像素值 from skimage import io,data img=data.chelsea() pixel=i…
skimage提供了io模块,顾名思义,这个模块是用来图片输入输出操作的.为了方便练习,也提供一个data模块,里面嵌套了一些示例图片,我们可以直接使用. 引入skimage模块可用: from skimage import io 一.从外部读取图片并显示 读取单张彩色rgb图片,使用skimage.io.imread(fname)函数,带一个参数,表示需要读取的文件路径.显示图片使用skimage.io.imshow(arr)函数,带一个参数,表示需要显示的arr数组(读取的图片以numpy数…
镜头边界检测技术简述 介绍 作为视频最基本的单元帧(Frame),它的本质其实就是图片,一系列帧通过某种顺序组成在一起就构成了视频.镜头边界是视频相邻两帧出现了某种意义的变化,即镜头边界反映了视频内容的不连续性.这种变化反映了某些关键信息,通过设定不同的检测指标,我们能够得到这些关键信息的变化.因此镜头边界检测技术(Shot Bound Detection)的实质即设定一个检测指标来获取我们需要的关键信息.这种关键信息在不同任务中的体现使不一样的,动作识别中我们需要能检测动作变化的镜头边界,视频…
数字图像的随机噪声在图像处理中有着重要的位置,今天用到了,就回顾一下.做个总结. 随机噪声很多种,最常用的一般有两种,高斯噪声和椒盐噪声,下面我们就针对这两种噪声做个科普. 高斯噪声:高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声与椒盐噪声相似(Salt And Pepper Noise),高斯噪声(gauss noise)也是数字图像的一个常见噪声.椒盐噪声是出现在随机位置.噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声.噪点深度随机的噪声. 正如上面的简…
在该文将介绍基本的几种应用于边缘检测的滤波器,首先我们读入saber用来做为示例的图像 #读入图像代码,在此之前应当引入必要的opencv matplotlib numpy saber = cv2.imread("saber.png") saber = cv2.cvtColor(saber,cv2.COLOR_BGR2RGB) plt.imshow(saber) plt.axis("off") plt.show() 使用上图作为滤波器使用的图形 Roberts 交叉…
在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image, nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from…
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s…
形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot as plt from skimage import d…
在极坐标中,圆的表示方式为: x=x0+rcosθ y=y0+rsinθ 圆心为(x0,y0),r为半径,θ为旋转度数,值范围为0-359 如果给定圆心点和半径,则其它点是否在圆上,我们就能检测出来了.在图像中,我们将每个非0像素点作为圆心点,以一定的半径进行检测,如果有一个点在圆上,我们就对这个圆心累加一次.如果检测到一个圆,那么这个圆心点就累加到最大,成为峰值.因此,在检测结果中,一个峰值点,就对应一个圆心点. 霍夫圆检测的函数: skimage.transform.hough_circle…
在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如…
本文提供更多更强大的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage…
对图像进行形态学变换.变换对象一般为灰度图或二值图,功能函数放在morphology子模块内. 1.膨胀(dilation) 原理:一般对二值图像进行操作.找到像素值为1的点,将它的邻近像素点都设置成这个值.1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围.一般用来扩充边缘或填充小的孔洞. 功能函数:skimage.morphology.dilation(image, selem=None) selem表示结构元素,用于设定局部区域的形状和大小. from skimage…
图形包括线条.圆形.椭圆形.多边形等. 在skimage包中,绘制图形用的是draw模块,不要和绘制图像搞混了. 1.画线条 函数调用格式为: skimage.draw.line(r1,c1,r2,c2) r1,r2: 开始点的行数和结束点的行数 c1,c2: 开始点的列数和结束点的列数 返回当前绘制图形上所有点的坐标,如: rr, cc =draw.line(1, 5, 8, 2) 表示从(1,5)到(8,2)连一条线,返回线上所有的像素点坐标[rr,cc] from skimage impo…
图像亮度与对比度的调整,是放在skimage包的exposure模块里面 1.gamma调整 原理:I=Ig 对原图像的像素,进行幂运算,得到新的像素值.公式中的g就是gamma值. 如果gamma>1, 新图像比原图像暗 如果gamma<1,新图像比原图像亮 函数格式为:skimage.exposure.adjust_gamma(image, gamma=1) gamma参数默认为1,原像不发生变化 . from skimage import data, exposure, img_as_f…
http://blog.csdn.net/ebowtang/article/details/38961399 之前一段我们提到的算法都是和平滑有关, 经过平滑算法之后, 图像锐度降低, 降低到一定程度, 就变成了模糊. 今天我们反其道行之, 我们看看锐化是怎么做的. 这里的锐化, 还是的从平滑谈开去.我们先来观察原来的图像和平滑图像的区别: 原图 raw: 模糊图 blur: _________________________________________________________ 源图…
(1)线性变换:通过建立灰度映射来调整源图像的灰度. k>1增强图像的对比度:k=1调节图像亮度,通过改变d值达到调节亮度目的:0 i = imread('theatre.jpg');i = im2double(rgb2gray(i));[m,n]=size(i);%增加对比度Fa = 1.25; Fb = 0;O = Fa.*i + Fb/255;figure(1), subplot(221), imshow(O);title('Fa = 1.25, Fb = 0, contrast incr…